-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Ai rockpaper scisor game first commit
- Loading branch information
0 parents
commit ac0d1fa
Showing
6 changed files
with
285 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
""" | ||
Hand Tracking Module | ||
By: Computer Vision Zone | ||
Website: https://www.computervision.zone/ | ||
""" | ||
|
||
import cv2 | ||
import mediapipe as mp | ||
import math | ||
|
||
|
||
class HandDetector: | ||
""" | ||
Finds Hands using the mediapipe library. Exports the landmarks | ||
in pixel format. Adds extra functionalities like finding how | ||
many fingers are up or the distance between two fingers. Also | ||
provides bounding box info of the hand found. | ||
""" | ||
|
||
def __init__(self, mode=False, maxHands=2, detectionCon=0.5, minTrackCon=0.5): | ||
""" | ||
:param mode: In static mode, detection is done on each image: slower | ||
:param maxHands: Maximum number of hands to detect | ||
:param detectionCon: Minimum Detection Confidence Threshold | ||
:param minTrackCon: Minimum Tracking Confidence Threshold | ||
""" | ||
self.mode = mode | ||
self.maxHands = maxHands | ||
self.detectionCon = detectionCon | ||
self.minTrackCon = minTrackCon | ||
|
||
self.mpHands = mp.solutions.hands | ||
self.hands = self.mpHands.Hands(static_image_mode=self.mode, max_num_hands=self.maxHands, | ||
min_detection_confidence=self.detectionCon, | ||
min_tracking_confidence=self.minTrackCon) | ||
self.mpDraw = mp.solutions.drawing_utils | ||
self.tipIds = [4, 8, 12, 16, 20] | ||
self.fingers = [] | ||
self.lmList = [] | ||
|
||
def findHands(self, img, draw=True, flipType=True): | ||
""" | ||
Finds hands in a BGR image. | ||
:param img: Image to find the hands in. | ||
:param draw: Flag to draw the output on the image. | ||
:return: Image with or without drawings | ||
""" | ||
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
self.results = self.hands.process(imgRGB) | ||
allHands = [] | ||
h, w, c = img.shape | ||
if self.results.multi_hand_landmarks: | ||
for handType, handLms in zip(self.results.multi_handedness, self.results.multi_hand_landmarks): | ||
myHand = {} | ||
## lmList | ||
mylmList = [] | ||
xList = [] | ||
yList = [] | ||
for id, lm in enumerate(handLms.landmark): | ||
px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) | ||
mylmList.append([px, py, pz]) | ||
xList.append(px) | ||
yList.append(py) | ||
|
||
## bbox | ||
xmin, xmax = min(xList), max(xList) | ||
ymin, ymax = min(yList), max(yList) | ||
boxW, boxH = xmax - xmin, ymax - ymin | ||
bbox = xmin, ymin, boxW, boxH | ||
cx, cy = bbox[0] + (bbox[2] // 2), \ | ||
bbox[1] + (bbox[3] // 2) | ||
|
||
myHand["lmList"] = mylmList | ||
myHand["bbox"] = bbox | ||
myHand["center"] = (cx, cy) | ||
|
||
if flipType: | ||
if handType.classification[0].label == "Right": | ||
myHand["type"] = "Left" | ||
else: | ||
myHand["type"] = "Right" | ||
else: | ||
myHand["type"] = handType.classification[0].label | ||
allHands.append(myHand) | ||
|
||
## draw | ||
if draw: | ||
self.mpDraw.draw_landmarks(img, handLms, | ||
self.mpHands.HAND_CONNECTIONS) | ||
cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20), | ||
(bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20), | ||
(255, 0, 255), 2) | ||
cv2.putText(img, myHand["type"], (bbox[0] - 30, bbox[1] - 30), cv2.FONT_HERSHEY_PLAIN, | ||
2, (255, 0, 255), 2) | ||
if draw: | ||
return allHands, img | ||
else: | ||
return allHands | ||
|
||
def fingersUp(self, myHand): | ||
""" | ||
Finds how many fingers are open and returns in a list. | ||
Considers left and right hands separately | ||
:return: List of which fingers are up | ||
""" | ||
myHandType = myHand["type"] | ||
myLmList = myHand["lmList"] | ||
if self.results.multi_hand_landmarks: | ||
fingers = [] | ||
# Thumb | ||
if myHandType == "Right": | ||
if myLmList[self.tipIds[0]][0] > myLmList[self.tipIds[0] - 1][0]: | ||
fingers.append(1) | ||
else: | ||
fingers.append(0) | ||
else: | ||
if myLmList[self.tipIds[0]][0] < myLmList[self.tipIds[0] - 1][0]: | ||
fingers.append(1) | ||
else: | ||
fingers.append(0) | ||
|
||
# 4 Fingers | ||
for id in range(1, 5): | ||
if myLmList[self.tipIds[id]][1] < myLmList[self.tipIds[id] - 2][1]: | ||
fingers.append(1) | ||
else: | ||
fingers.append(0) | ||
return fingers | ||
|
||
def findDistance(self, p1, p2, img=None): | ||
""" | ||
Find the distance between two landmarks based on their | ||
index numbers. | ||
:param p1: Point1 | ||
:param p2: Point2 | ||
:param img: Image to draw on. | ||
:param draw: Flag to draw the output on the image. | ||
:return: Distance between the points | ||
Image with output drawn | ||
Line information | ||
""" | ||
|
||
x1, y1 = p1 | ||
x2, y2 = p2 | ||
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 | ||
length = math.hypot(x2 - x1, y2 - y1) | ||
info = (x1, y1, x2, y2, cx, cy) | ||
if img is not None: | ||
cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED) | ||
cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED) | ||
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3) | ||
cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED) | ||
return length, info, img | ||
else: | ||
return length, info | ||
|
||
|
||
def main(): | ||
cap = cv2.VideoCapture(0) | ||
detector = HandDetector(detectionCon=0.8, maxHands=2) | ||
while True: | ||
# Get image frame | ||
success, img = cap.read() | ||
# Find the hand and its landmarks | ||
hands, img = detector.findHands(img) # with draw | ||
# hands = detector.findHands(img, draw=False) # without draw | ||
|
||
if hands: | ||
# Hand 1 | ||
hand1 = hands[0] | ||
lmList1 = hand1["lmList"] # List of 21 Landmark points | ||
bbox1 = hand1["bbox"] # Bounding box info x,y,w,h | ||
centerPoint1 = hand1['center'] # center of the hand cx,cy | ||
handType1 = hand1["type"] # Handtype Left or Right | ||
|
||
fingers1 = detector.fingersUp(hand1) | ||
|
||
if len(hands) == 2: | ||
# Hand 2 | ||
hand2 = hands[1] | ||
lmList2 = hand2["lmList"] # List of 21 Landmark points | ||
bbox2 = hand2["bbox"] # Bounding box info x,y,w,h | ||
centerPoint2 = hand2['center'] # center of the hand cx,cy | ||
handType2 = hand2["type"] # Hand Type "Left" or "Right" | ||
|
||
fingers2 = detector.fingersUp(hand2) | ||
|
||
# Find Distance between two Landmarks. Could be same hand or different hands | ||
length, info, img = detector.findDistance(lmList1[8][0:2], lmList2[8][0:2], img) # with draw | ||
# length, info = detector.findDistance(lmList1[8], lmList2[8]) # with draw | ||
# Display | ||
cv2.imshow("Image", img) | ||
cv2.waitKey(1) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
from random import random | ||
from sre_constants import SUCCESS | ||
import cv2 | ||
import cvzone | ||
from cvzone.HandTrackingModule import HandDetector | ||
import time | ||
import random | ||
|
||
|
||
cap = cv2.VideoCapture(0) | ||
cap.set(3, 640) | ||
cap.set(4, 480) | ||
|
||
detector = HandDetector(maxHands=1) | ||
|
||
timer = 0 | ||
stateResult = False | ||
startGame = False | ||
scores = [0,0] | ||
|
||
while True: | ||
imgBG = cv2.imread('Resources/BG.png') | ||
SUCCESS, img = cap.read() | ||
|
||
imgScaled = cv2.resize(img, (0,0), None, 0.875, 0.875) | ||
imgScaled = imgScaled[:, 80:480] | ||
|
||
# find hands | ||
hands, img = detector.findHands(imgScaled) | ||
|
||
if startGame: | ||
|
||
if stateResult is False: | ||
timer = time.time() - initialTime | ||
cv2.putText(imgBG, str(int(timer)), (605,435),cv2.FONT_HERSHEY_PLAIN, 6, (255, 0, 255), 4) | ||
|
||
if timer > 3: | ||
stateResult = True | ||
timer = 0 | ||
|
||
if hands: | ||
playerMove = None | ||
hand = hands[0] | ||
fingers = detector.fingersUp(hand) | ||
if fingers == [0, 0, 0, 0, 0]: | ||
playerMove = 1 | ||
if fingers == [1, 1, 1, 1, 1]: | ||
playerMove = 2 | ||
if fingers == [0, 1, 1, 0, 0]: | ||
playerMove = 3 | ||
|
||
|
||
randomNumber = random.randint(1, 3) | ||
|
||
imgAI = cv2.imread(f'Resources/{randomNumber}.png', cv2.IMREAD_UNCHANGED) | ||
imgBG = cvzone.overlayPNG(imgBG, imgAI, (149, 310)) | ||
|
||
# Player wins | ||
if (playerMove == 1 and randomNumber == 3) or \ | ||
(playerMove == 2 and randomNumber == 1) or \ | ||
(playerMove == 3 and randomNumber == 2): | ||
scores[1] +=1 | ||
|
||
# AI wins | ||
if (playerMove == 3 and randomNumber == 1) or \ | ||
(playerMove == 1 and randomNumber == 2) or \ | ||
(playerMove == 2 and randomNumber == 3): | ||
scores[0] +=1 | ||
|
||
imgBG[234:654, 795:1195] = imgScaled | ||
|
||
if stateResult: | ||
imgBG = cvzone.overlayPNG(imgBG, imgAI, (149, 310)) | ||
|
||
cv2.putText(imgBG, str(scores[0]), (410,215),cv2.FONT_HERSHEY_PLAIN, 4, (255, 225, 255), 6) | ||
cv2.putText(imgBG, str(scores[1]), (1112,215),cv2.FONT_HERSHEY_PLAIN, 4, (255, 225, 255), 6) | ||
|
||
|
||
|
||
|
||
# cv2.imshow('image', img) | ||
cv2.imshow('BG', imgBG) | ||
# cv2.imshow('Scaled', imgScaled) | ||
key = cv2.waitKey(1) | ||
if key == ord('s'): | ||
startGame = True | ||
initialTime = time.time() | ||
stateResult = False |