Skip to content

CNN built in Python using Keras to classify parasitised malaria cells

License

Notifications You must be signed in to change notification settings

Amit-H/Malaria-classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Building a Malaria Classifier

Acknowledgements

The data for this project is publically avaialble from the Kaggle user Aurnava and was initally collected from the NIH malaria dataset repositories.

This project follows the work of Siraj Raval, and applies the CNN developed there in this context, with a few adjustments.

Background

Malaria is an infectious disease, which is mosquito-borne and is endemic within the equitorial belt. WHO estimates place the annual death toll of malaria at 405000 from their count in 2018. Patients infected with malaria present with flu-like symptoms, and can encompas headaches, fevers and nausea. More severe and complicated cases can result in actue respiratory distress syndrome, encephalopathy, seizures, coma and eventually death. New technologies are being developed to combat the detrimental effects of malaria, and to reduce the mortality of the disease.

Current Malaria tests are conducted via microscopic examination, etheir though antigen dereived rapid diagnositc tests or through blood films, and visual confirmation of parasitic invasion within the red blood cells. This current testing methodology has several drawbacks, firstly being that result accuracy relies on having a specifically skilled scientist identify the parasite, which leads on to limiting the throughput of the test in a high volume setting. Machine learning can be applied to this context to aid the identification of parasitised cells at a higher throughput.

Convolutional nerual networks (CNN) perform well at image classification, therefore training a CNN to identify parasitised and uninfected cells could be beneficial.

Results

Tensorflow retraining of the ResNet pretrained imageset was conducted to 20 epochs, and yielded an accuracy greater than 0.995 and a loss of 0.007.

Accuracy across 20 epochs

Loss across 20 epochs

About

CNN built in Python using Keras to classify parasitised malaria cells

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published