Skip to content

Commit

Permalink
[Fooocus 2.0.50] Variation/Upscale (Midjourney Toolbar) (lllyasviel#389)
Browse files Browse the repository at this point in the history
  • Loading branch information
lllyasviel authored Sep 16, 2023
1 parent 58c29ae commit 8ef31d3
Show file tree
Hide file tree
Showing 15 changed files with 439 additions and 93 deletions.
1 change: 0 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ __pycache__
lena.png
lena_result.png
lena_test.py
!taesdxl_decoder.pth
/repositories
/venv
/tmp
Expand Down
2 changes: 1 addition & 1 deletion fooocus_version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
version = '2.0.19'
version = '2.0.50'
14 changes: 11 additions & 3 deletions launch.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from modules.launch_util import is_installed, run, python, \
run_pip, repo_dir, git_clone, requirements_met, script_path, dir_repos
from modules.model_loader import load_file_from_url
from modules.path import modelfile_path, lorafile_path, vae_approx_path, fooocus_expansion_path
from modules.path import modelfile_path, lorafile_path, vae_approx_path, fooocus_expansion_path, upscale_models_path

REINSTALL_ALL = False

Expand Down Expand Up @@ -67,8 +67,14 @@ def prepare_environment():
]

vae_approx_filenames = [
('taesdxl_decoder.pth',
'https://huggingface.co/lllyasviel/misc/resolve/main/taesdxl_decoder.pth')
('xlvaeapp.pth',
'https://huggingface.co/lllyasviel/misc/resolve/main/xlvaeapp.pth')
]


upscaler_filenames = [
('fooocus_upscaler_s409985e5.bin',
'https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_upscaler_s409985e5.bin')
]


Expand All @@ -79,6 +85,8 @@ def download_models():
load_file_from_url(url=url, model_dir=lorafile_path, file_name=file_name)
for file_name, url in vae_approx_filenames:
load_file_from_url(url=url, model_dir=vae_approx_path, file_name=file_name)
for file_name, url in upscaler_filenames:
load_file_from_url(url=url, model_dir=upscale_models_path, file_name=file_name)

load_file_from_url(
url='https://huggingface.co/lllyasviel/misc/resolve/main/fooocus_expansion.bin',
Expand Down
Binary file removed models/vae_approx/taesdxl_decoder.pth
Binary file not shown.
168 changes: 123 additions & 45 deletions modules/async_worker.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import threading
import torch


buffer = []
outputs = []

Expand All @@ -14,14 +13,18 @@ def worker():
import random
import copy
import modules.default_pipeline as pipeline
import modules.core as core
import modules.flags as flags
import modules.path
import modules.patch
import modules.virtual_memory as virtual_memory
import comfy.model_management

from modules.sdxl_styles import apply_style, aspect_ratios, fooocus_expansion
from modules.private_logger import log
from modules.expansion import safe_str
from modules.util import join_prompts, remove_empty_str
from modules.util import join_prompts, remove_empty_str, HWC3, resize_image
from modules.upscaler import perform_upscale

try:
async_gradio_app = shared.gradio_root
Expand All @@ -37,25 +40,102 @@ def progressbar(number, text):
outputs.append(['preview', (number, text, None)])

@torch.no_grad()
@torch.inference_mode()
def handler(task):
prompt, negative_prompt, style_selections, performance_selction, \
aspect_ratios_selction, image_number, image_seed, sharpness, \
base_model_name, refiner_model_name, \
l1, w1, l2, w2, l3, w3, l4, w4, l5, w5 = task
aspect_ratios_selction, image_number, image_seed, sharpness, \
base_model_name, refiner_model_name, \
l1, w1, l2, w2, l3, w3, l4, w4, l5, w5, \
input_image_checkbox, \
uov_method, uov_input_image = task

loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)]

raw_style_selections = copy.deepcopy(style_selections)

uov_method = uov_method.lower()

if fooocus_expansion in style_selections:
use_expansion = True
style_selections.remove(fooocus_expansion)
else:
use_expansion = False

use_style = len(style_selections) > 0

modules.patch.sharpness = sharpness
initial_latent = None
denoising_strength = 1.0
tiled = False

if performance_selction == 'Speed':
steps = 30
switch = 20
else:
steps = 60
switch = 40

pipeline.clear_all_caches() # save memory

width, height = aspect_ratios[aspect_ratios_selction]

if input_image_checkbox:
progressbar(0, 'Image processing ...')
if uov_method != flags.disabled and uov_input_image is not None:
uov_input_image = HWC3(uov_input_image)
H, W, C = uov_input_image.shape
if 'vary' in uov_method:
if H * W + 8 < width * height or float(abs(H * width - W * height)) > 1.5 * float(max(H, W, width, height)):
uov_input_image = resize_image(uov_input_image, width=width, height=height)
print(f'Aspect ratio corrected - users are uploading their own images.')
if 'subtle' in uov_method:
denoising_strength = 0.5
if 'strong' in uov_method:
denoising_strength = 0.85
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(0, 'VAE encoding ...')
initial_latent = core.encode_vae(vae=pipeline.xl_base_patched.vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
elif 'upscale' in uov_method:
if '1.5x' in uov_method:
f = 1.5
elif '2x' in uov_method:
f = 2.0
else:
f = 1.0

width = int(W * f)
height = int(H * f)
image_is_super_large = width * height > 2800 * 2800
progressbar(0, f'Upscaling image from {str((H, W))} to {str((height, width))}...')

uov_input_image = core.numpy_to_pytorch(uov_input_image)
uov_input_image = perform_upscale(uov_input_image)
uov_input_image = core.pytorch_to_numpy(uov_input_image)[0]
uov_input_image = resize_image(uov_input_image, width=width, height=height)
print(f'Image upscaled.')

if 'fast' in uov_method or image_is_super_large:
if 'fast' not in uov_method:
print('Image is too large. Directly returned the SR image. '
'Usually directly return SR image at 4K resolution '
'yields better results than SDXL diffusion.')
outputs.append(['results', [uov_input_image]])
return

tiled = True
denoising_strength = 1.0 - 0.618
steps = int(steps * 0.618)
switch = int(steps * 0.67)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(0, 'VAE encoding ...')
initial_latent = core.encode_vae(vae=pipeline.xl_base_patched.vae, pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')

progressbar(1, 'Initializing ...')

Expand Down Expand Up @@ -152,16 +232,6 @@ def handler(task):

virtual_memory.try_move_to_virtual_memory(pipeline.xl_refiner.clip.cond_stage_model)

if performance_selction == 'Speed':
steps = 30
switch = 20
else:
steps = 60
switch = 40

pipeline.clear_all_caches() # save memory
width, height = aspect_ratios[aspect_ratios_selction]

results = []
all_steps = steps * image_number

Expand All @@ -174,35 +244,43 @@ def callback(step, x0, x, total_steps, y):

outputs.append(['preview', (13, 'Starting tasks ...', None)])
for current_task_id, task in enumerate(tasks):
imgs = pipeline.process_diffusion(
positive_cond=task['c'],
negative_cond=task['uc'],
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback)

for x in imgs:
d = [
('Prompt', raw_prompt),
('Negative Prompt', raw_negative_prompt),
('Fooocus V2 Expansion', task['expansion']),
('Styles', str(raw_style_selections)),
('Performance', performance_selction),
('Resolution', str((width, height))),
('Sharpness', sharpness),
('Base Model', base_model_name),
('Refiner Model', refiner_model_name),
('Seed', task['task_seed'])
]
for n, w in loras:
if n != 'None':
d.append((f'LoRA [{n}] weight', w))
log(x, d, single_line_number=3)

results += imgs
try:
imgs = pipeline.process_diffusion(
positive_cond=task['c'],
negative_cond=task['uc'],
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback,
latent=initial_latent,
denoise=denoising_strength,
tiled=tiled
)

for x in imgs:
d = [
('Prompt', raw_prompt),
('Negative Prompt', raw_negative_prompt),
('Fooocus V2 Expansion', task['expansion']),
('Styles', str(raw_style_selections)),
('Performance', performance_selction),
('Resolution', str((width, height))),
('Sharpness', sharpness),
('Base Model', base_model_name),
('Refiner Model', refiner_model_name),
('Seed', task['task_seed'])
]
for n, w in loras:
if n != 'None':
d.append((f'LoRA [{n}] weight', w))
log(x, d, single_line_number=3)

results += imgs
except comfy.model_management.InterruptProcessingException as e:
print('User stopped')
break

outputs.append(['results', results])
return
Expand Down
Loading

0 comments on commit 8ef31d3

Please sign in to comment.