Skip to content
forked from arvkevi/disarray

Confusion matrix metrics directly from your pandas DataFrame

License

Notifications You must be signed in to change notification settings

Aranil/disarray

 
 

Repository files navigation

disarray

Downloads Downloads Build Status codecov

disarray calculates metrics derived from a confusion matrix and makes them directly accessible from a pandas DataFrame.

disarray demo

If you are already using pandas, then disarray is easy to use, simply import disarray:

import pandas as pd

# dtype=int is important for Windows users
df = pd.DataFrame([[18, 1], [0, 1]], dtype=int)

import disarray

df.da.sensitivity
0    0.947368
1    1.000000
dtype: float64

Table of contents

Installation

Install using pip

$ pip install disarray

Clone from GitHub

$ git clone https://github.com/arvkevi/disarray.git
$ python setup.py install

Usage

The disarray package is intended to be used similar to a pandas attribute or method. disarray is registered as a pandas extension under da. For a DataFrame named df, access the library using df.da..

Binary Classification

To understand the input and usage for disarray, build an example confusion matrix for a binary classification problem from scratch with scikit-learn.
(You can install the packages you need to run the demo with: pip install -r requirements.demo.txt)

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# Generate a random binary classification dataset
X, y = datasets.make_classification(n_classes=2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
# fit and predict an SVM
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)

cm = confusion_matrix(y_test, y_pred)
print(cm)
[[13  2]
 [ 0 10]]

Using disarray is as easy as importing it and instantiating a DataFrame object from a square array of positive integers.

import disarray
import pandas as pd

# dtype=int is important for Windows users
df = pd.DataFrame(cm, dtype=int)
# access metrics for each class by index
print(df.da.precision[1])
0.83

Class Counts

disarray stores per-class counts of true positives, false positives, false negatives, and true negatives. Each of these are stored as capitalized abbreviations, TP, FP, FN, and TN.

df.da.TP
0    13
1    10
dtype: int64

Export Metrics

Use df.da.export_metrics() to store and/or visualize many common performance metrics in a new pandas DataFrame object. Use the metrics_to_include= argument to pass a list of metrics defined in disarray/metrics.py (default is to use __all_metrics__).

df.da.export_metrics(metrics_to_include=['precision', 'recall', 'f1'])
0 1 micro-average
precision 1.0 0.833333 0.92
recall 0.866667 1.0 0.92
f1 0.928571 0.909091 0.92

Multi-Class Classification

disarray works with multi-class classification confusion matrices also. Try it out on the iris dataset. Notice, the DataFrame is instantiated with an index and columns here, but it is not required.

# load the iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names
# split the training and testing data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# train and fit a SVM
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
cm = confusion_matrix(y_test, y_pred)

# Instantiate the confusion matrix DataFrame with index and columns
# dtype=int is important for Windows users
df = pd.DataFrame(cm, index=class_names, columns=class_names, dtype=int)
print(df)
setosa versicolor virginica
setosa 13 0 0
versicolor 0 10 6
virginica 0 0 9

disarray can provide per-class metrics:

df.da.sensitivity
setosa        1.000
versicolor    0.625
virginica     1.000
dtype: float64

In a familiar fashion, one of the classes can be accessed with bracket indexing.

df.da.sensitivity['setosa']
1.0

Currently, a micro-average is supported for both binary and multi-class classification confusion matrices. (Although it only makes sense in the multi-class case).

df.da.micro_sensitivity
0.8421052631578947

Finally, a DataFrame can be exported with selected metrics.

df.da.export_metrics(metrics_to_include=['sensitivity', 'specificity', 'f1'])
setosa versicolor virginica micro-average
sensitivity 1.0 0.625 1.0 0.842105
specificity 1.0 1.0 0.793103 0.921053
f1 1.0 0.769231 0.75 0.842105

Supported Metrics

'accuracy',
'f1',
'false_discovery_rate',
'false_negative_rate',
'false_positive_rate',
'negative_predictive_value',
'positive_predictive_value',
'precision',
'recall',
'sensitivity',
'specificity',
'true_negative_rate',
'true_positive_rate',

As well as micro-averages for each of these, accessible via df.da.micro_recall, for example.

Why disarray?

Working with a confusion matrix is common in data science projects. It is useful to have performance metrics available directly from pandas DataFrames.

Since pandas version 0.23.0, users can easily register custom accessors, which is how disarray is implemented.

Contributing

Contributions are welcome, please refer to CONTRIBUTING to learn more about how to contribute.

About

Confusion matrix metrics directly from your pandas DataFrame

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%