-
Notifications
You must be signed in to change notification settings - Fork 470
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
1,354 additions
and
0 deletions.
There are no files selected for viewing
125 changes: 125 additions & 0 deletions
125
PlatEMO/Algorithms/Multi-objective optimization/KTS/Adaptive_sampling.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
function Offspring01 = Adaptive_sampling(CAobj,DAobj,CAdec,DAdec,DAvar,DA,CA1,mu,p,phi) | ||
|
||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
% This function is written by Zhenshou Song | ||
|
||
Ideal_Point = min([CAobj;DAobj],[],1); | ||
|
||
if size(DAdec,1) <= mu | ||
flag = 1; | ||
else | ||
flag = Cal_Convergence(CAobj,DAobj,Ideal_Point); | ||
end | ||
|
||
if flag == 1 | ||
% convergence sampling strategy | ||
N = size(CAobj,1); | ||
CAobj01 = (CAobj-repmat(min(CAobj),N,1))./(repmat(max(CAobj)-min(CAobj),N,1)); | ||
I = zeros(N); | ||
for i = 1:N | ||
for j = 1:N | ||
I(i,j) = max(CAobj01(i,:)-CAobj01(j,:)); | ||
end | ||
end | ||
C = max(abs(I)); | ||
F = sum(-exp(-I./repmat(C,N,1)/0.05)) + 1; | ||
Choose = 1:N; | ||
while length(Choose) > mu | ||
[~,x] = min(F(Choose)); | ||
F = F + exp(-I(Choose(x),:)/C(Choose(x))/0.05); | ||
Choose(x) = []; | ||
end | ||
Offspring01 = CAdec(Choose,:); | ||
else | ||
if size(DAdec,1) <= mu | ||
Offspring01 = DAdec; | ||
else | ||
if PD(DAobj) < PD(DA.objs) | ||
% uncertainty sampling strategy | ||
An = size(DAvar,1); | ||
Choose = zeros(1,5); | ||
for i = 1:mu | ||
A_num = randperm(size(DAvar,1)); | ||
Uncertainty = mean(DAvar(A_num(1:ceil(phi*An)),1:size(DAobj,2)),2); | ||
[~,best] = max(Uncertainty); | ||
Choose (i) = A_num(best); | ||
end | ||
Offspring01 = DAdec(Choose ,:); | ||
else | ||
% diversity sampling strategy | ||
DA_Nor = (DA.objs - repmat(min([DAobj;DA.objs],[],1),length(DA),1))... | ||
./repmat(max([DAobj;DA.objs],[],1) - min([DAobj;DA.objs],[],1),length(DA),1); | ||
DA_Nor_pre = (DAobj - repmat(min([DAobj;DA.objs],[],1),size(DAobj,1),1))... | ||
./repmat(max([DAobj;DA.objs],[],1) - min([DAobj;DA.objs],[],1),size(DAobj,1),1); | ||
N = size(DA_Nor,1); | ||
Pop = [DA_Nor;DA_Nor_pre]; | ||
Pop_dec = [DA.decs;DAdec]; | ||
NN = size(Pop,1); | ||
Choose = false(1,NN); | ||
Choose(1:N) = true; | ||
MaxSize = N+mu; | ||
Distance = inf(N); | ||
for i = 1 : NN-1 | ||
for j = i+1 : NN | ||
Distance(i,j) = norm(Pop(i,:)-Pop(j,:),p); | ||
Distance(j,i) = Distance(i,j); | ||
end | ||
end | ||
Offspring01 = []; | ||
while sum(Choose) < MaxSize | ||
Remain = find(~Choose); | ||
[~,x] = max(min(Distance(~Choose,Choose),[],2)); | ||
Choose(Remain(x)) = true; | ||
Offspring01 = [Offspring01;Pop_dec(Remain(x),:)]; | ||
end | ||
end | ||
end | ||
end | ||
end | ||
|
||
function Score = PD(PopObj) | ||
% Pure diversity | ||
|
||
N = size(PopObj,1); | ||
C = false(N); | ||
C(logical(eye(size(C)))) = true; | ||
D = pdist2(PopObj,PopObj,'minkowski',0.1); | ||
D(logical(eye(size(D)))) = inf; | ||
Score = 0; | ||
for k = 1 : N-1 | ||
while true | ||
[d,J] = min(D,[],2); | ||
[~,i] = max(d); | ||
if D(J(i),i) ~= -inf | ||
D(J(i),i) = inf; | ||
end | ||
if D(i,J(i)) ~= -inf | ||
D(i,J(i)) = inf; | ||
end | ||
P = any(C(i,:),1); | ||
while ~P(J(i)) | ||
newP = any(C(P,:),1); | ||
if P == newP | ||
break; | ||
else | ||
P = newP; | ||
end | ||
end | ||
if ~P(J(i)) | ||
break; | ||
end | ||
end | ||
C(i,J(i)) = true; | ||
C(J(i),i) = true; | ||
D(i,:) = -inf; | ||
Score = Score + d(i); | ||
end | ||
end |
56 changes: 56 additions & 0 deletions
56
PlatEMO/Algorithms/Multi-objective optimization/KTS/CalFitness.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
function Fitness = CalFitness(PopObj,PopCon) | ||
% Calculate the fitness of each solution | ||
|
||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
N = size(PopObj,1); | ||
if nargin == 1 | ||
CV = zeros(N,1); | ||
else | ||
CV = sum(max(0,PopCon),2); | ||
end | ||
|
||
%% Detect the dominance relation between each two solutions | ||
Dominate = false(N); | ||
for i = 1 : N-1 | ||
for j = i+1 : N | ||
if CV(i) < CV(j) | ||
Dominate(i,j) = true; | ||
elseif CV(i) > CV(j) | ||
Dominate(j,i) = true; | ||
else | ||
k = any(PopObj(i,:)<PopObj(j,:)) - any(PopObj(i,:)>PopObj(j,:)); | ||
if k == 1 | ||
Dominate(i,j) = true; | ||
elseif k == -1 | ||
Dominate(j,i) = true; | ||
end | ||
end | ||
end | ||
end | ||
|
||
%% Calculate S(i) | ||
S = sum(Dominate,2); | ||
|
||
%% Calculate R(i) | ||
R = zeros(1,N); | ||
for i = 1 : N | ||
R(i) = sum(S(Dominate(:,i))); | ||
end | ||
|
||
%% Calculate D(i) | ||
Distance = pdist2(PopObj,PopObj); | ||
Distance(logical(eye(length(Distance)))) = inf; | ||
Distance = sort(Distance,2); | ||
D = 1./(Distance(:,floor(sqrt(N)))+2); | ||
|
||
%% Calculate the fitnesses | ||
Fitness = R + D'; | ||
end |
36 changes: 36 additions & 0 deletions
36
PlatEMO/Algorithms/Multi-objective optimization/KTS/Cal_Convergence.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
function flag = Cal_Convergence(PopObj1,PopObj2,Zmin) | ||
|
||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
% This function is written by Zhenshou Song | ||
|
||
N1 = size(PopObj1,1); | ||
N2 = size(PopObj2,1); | ||
if N1 ~= N2 | ||
flag = 0; | ||
else | ||
PopObj = [PopObj1;PopObj2] - repmat(Zmin,size(PopObj1,1)+size(PopObj2,1),1); | ||
PopObj = (PopObj)./repmat(max(PopObj,[],1) - Zmin,size(PopObj,1),1); | ||
Distance1 = zeros(1,N1); | ||
Distance2 = zeros(1,N2); | ||
% calculate the distance sets of CCA and CDA | ||
for i = 1:N1 | ||
Distance1(i) = sqrt(sum(PopObj(i,:),2)); | ||
end | ||
for i = 1: N2 | ||
Distance2(i) = sqrt(sum(PopObj(N1+i,:),2)); | ||
end | ||
% rank-sum test, alpha = 0.05 | ||
[~,flag,~,r1,r2]=signrank_new(Distance1, Distance2,'alpha',0.05); | ||
if flag == 1 && (r1-r2 <0) | ||
flag = 0; | ||
end | ||
end | ||
end |
71 changes: 71 additions & 0 deletions
71
PlatEMO/Algorithms/Multi-objective optimization/KTS/KCCMO_sampling.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
function [Population,Fitness1] = KCCMO_sampling(Population,CA1,N) | ||
|
||
%------------------------------- Copyright -------------------------------- | ||
% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for | ||
% research purposes. All publications which use this platform or any code | ||
% in the platform should acknowledge the use of "PlatEMO" and reference "Ye | ||
% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform | ||
% for evolutionary multi-objective optimization [educational forum], IEEE | ||
% Computational Intelligence Magazine, 2017, 12(4): 73-87". | ||
%-------------------------------------------------------------------------- | ||
|
||
CA = CA1.best.objs; | ||
if isempty(CA) | ||
CA = CA1.objs; | ||
end | ||
|
||
Fitness = CalFitness_new(Population.obj,Population.con,CA); | ||
|
||
NCluster = N; | ||
[IDX,~] = kmeans(Population.obj,NCluster); | ||
Next = false(size(Population.obj,1),1); | ||
for i = 1:NCluster | ||
select = find(IDX == i); | ||
Fitness1 = Fitness(select); | ||
[~,index] = min(Fitness1); | ||
Next(select(index)) = true; | ||
end | ||
Population = givevalue(Population,Next); | ||
end | ||
|
||
function Fitness = CalFitness_new(PopObj,PopCon,CCA) | ||
|
||
N = size(PopObj,1); | ||
if isempty(PopCon) | ||
CV = zeros(N,1); | ||
else | ||
CV = sum(max(0,PopCon),2); | ||
end | ||
|
||
%% Detect the dominance relation between each two solutions | ||
Dominate = false(N); | ||
for i = 1 : N-1 | ||
for j = i+1 : N | ||
if CV(i) < CV(j) | ||
Dominate(i,j) = true; | ||
elseif CV(i) > CV(j) | ||
Dominate(j,i) = true; | ||
else | ||
k = any(PopObj(i,:)<PopObj(j,:)) - any(PopObj(i,:)>PopObj(j,:)); | ||
if k == 1 | ||
Dominate(i,j) = true; | ||
elseif k == -1 | ||
Dominate(j,i) = true; | ||
end | ||
end | ||
|
||
end | ||
end | ||
|
||
S = sum(Dominate,2); | ||
|
||
R = zeros(1,N); | ||
for i = 1 : N | ||
R(i) = sum(S(Dominate(:,i))); | ||
end | ||
|
||
Distance = pdist2(PopObj,CCA); | ||
Distance1 = min(Distance,[],2); | ||
D = 1./(Distance1+2); | ||
Fitness = R + D'; | ||
end |
Oops, something went wrong.