-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEdgeDetector.py
268 lines (192 loc) · 9.17 KB
/
EdgeDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from PIL import Image
import cv2
import numpy as np
from skimage.morphology import skeletonize
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import scipy.interpolate as inter
from point_ordering import get_pt_ordering
# import plantcv
from SAM import create_mask
from largestCC import keep_largest_connected_component
from fillHoles import fillHoles
from matplotlib import colormaps
from utils import click_points_simple
import os
'''This class will process an image, and produce a spline of where the wound is based on the image'''
class EdgeDetector:
def find_edges(self, img):
grayscale_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imwrite("grayscale_image.jpg", grayscale_image)
# grayscale_image = np.clip(grayscale_image, 0, 170)
cv2.imwrite("grayscale_image_clip.jpg", grayscale_image)
# blur = cv2.bilateralFilter(grayscale_image, 5, 100, 150)
cv2.imwrite("blur_clip.jpg", grayscale_image)
return cv2.Canny(grayscale_image, 100, 600)
def dilate_to_line(self, edge_mask, kernel_dim):
kernel = np.ones((kernel_dim, kernel_dim), np.uint8)
return cv2.dilate(edge_mask, kernel, iterations=1)
def generate_spline(self, pixels):
pass
def img_to_line(img_path, box_method, viz=False, save_figs=False):
if not os.path.isdir("temp_images"):
os.mkdir('temp_images')
# load the image and convert into
# numpy array
img = Image.open(img_path)
# asarray() class is used to convert
# PIL images into NumPy arrays
numpydata = np.asarray(img)
fig = plt.figure()
plt.imshow(numpydata)
#plt.show()
left_coords, right_coords = click_points_simple(fig)
print(left_coords)
print(right_coords)
num_left = len(left_coords)
num_right = len(right_coords)
fore_back = [1 for _ in range(num_left)] + [0 for _ in range(num_right)]
def show_mask(mask, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
plt.imshow(mask_image)
original_mask, img, display_mask = create_mask(img_path, np.array(left_coords + right_coords), np.array(fore_back), fig)
cv2.imwrite('temp_images/sam_mask.jpg', original_mask)
mask = keep_largest_connected_component('temp_images/sam_mask.jpg')
cv2.imwrite('temp_images/sam_mask.jpg', mask)
## VARIABLE WOUND WIDTH STUFF
# TRY GETTING BORDER OF MASK
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Choose the largest contour if there are multiple
border_pts = max(contours, key=cv2.contourArea).squeeze()
print(border_pts)
print(type(border_pts))
# mask post-processing
new_edge_detector = EdgeDetector()
mask = cv2.imread('temp_images/sam_mask.jpg')
img_dilated = new_edge_detector.dilate_to_line(mask, 5)
cv2.imwrite("temp_images/dilated_sam.jpg", img_dilated)
img_dilated = fillHoles('temp_images/dilated_sam.jpg')
cv2.imwrite("temp_images/filledHoles.jpg", img_dilated)
# threshold to feed into skeletonize
binary_image = np.where(img_dilated > 0, 1, 0)
skeleton = skeletonize(binary_image)
np.save('temp_images/binary_skeleton.npy', skeleton)
# plt.imshow(img)
# plt.imshow(skeleton)
# plt.show()
plt.imsave('temp_images/skeleton_sam.jpg', skeleton)
# order points
ordered_points = get_pt_ordering(skeleton)
filled_holes = Image.open("temp_images/sam_mask.jpg")
numpydata = np.asarray(filled_holes)
# ax2.imshow(numpydata)
# ax2.title.set_text("SAM Mask")
# fig.tight_layout()
# plot the image, dilation, skeleton
if save_figs:
plt.savefig('experimentation/point_results/chicken_result_left1.jpg', dpi=1200)
# now, order the points
img = Image.open(img_path)
left_img = np.asarray(img)
plt.imshow(left_img)
show_mask(display_mask)
# print(len(contours))
# RIA'S FUNCTION:
def fill_gaps(contour):
def linear_int_x(x1, y1, x2, y2, y):
return x1 + (y - y1) * (x2 - x1) / (y2 - y1)
def linear_int_y(x1, y1, x2, y2, x):
return y1 + (x - x1) * (y2 - y1) / (x2 - x1)
def euc_dist(x, y):
return np.sqrt(abs(x[0]-y[0])**2 + abs(x[1]-y[1])**2)
contour = np.append(contour, [contour[0]], axis=0)
new_contour = np.copy(contour)
for i in range(len(contour)-1):
if euc_dist(contour[i], contour[i+1]) > 2:
x1, x2, y1, y2 = contour[i][0], contour[i+1][0], contour[i][1], contour[i+1][1]
# linearly interpolate along the direction with more sparsity
if abs(x1-x2) > abs(y1-y2):
for new_x in range(min(x1, x2)+1, max(x1, x2)):
new_contour = np.append(new_contour, [[new_x, int(linear_int_y(x1, y1, x2, y2, new_x))]], axis=0)
else:
for new_y in range(min(y1, y2)+1, max(y1, y2)):
new_contour = np.append(new_contour, [[int(linear_int_x(x1, y1, x2, y2, new_y)), new_y]], axis=0)
return new_contour
border_pts_gaps_filled = fill_gaps(border_pts)
# plt.scatter([pt[0] for pt in border_pts_gaps_filled], [pt[1] for pt in border_pts_gaps_filled], color='blue', s=1)
#plt.plot([pt[0] for pt in border_pts_gaps_filled], [pt[1] for pt in border_pts_gaps_filled], 'b')
# plt.plot([pt[1] for pt in ordered_points], [pt[0] for pt in ordered_points], 'w')
# plt.plot([border_pts[0,0], border_pts[-1,0]], [border_pts[0,1], border_pts[-1,1]], 'r')
plt.show()
# print(fill_gaps(border_pts))
return ordered_points, numpydata, border_pts_gaps_filled
def line_to_spline(line, img_path, mm_per_pixel, viz=False):
# fit spline to points
exact_tck, u = inter.splprep([[pt[0] for pt in line], [pt[1] for pt in line]], k=3, s=0)
exact_wound_parametric = lambda t, d: inter.splev(t, exact_tck, der = d)
# from our ordered set of points, what fraction we pick: we will pick 1 in every sample_ratio points
sample_ratio = 30
sampled_pts = [line[i * sample_ratio] for i in range(len(line) // sample_ratio)] + [line[-1]]
sampled_tck, u = inter.splprep([[pt[0] for pt in sampled_pts], [pt[1] for pt in sampled_pts]], k=3, s=0)
sampled_wound_parametric = lambda t, d: inter.splev(t, sampled_tck, der = d)
smoothed_tck, u = inter.splprep([[pt[0] for pt in line], [pt[1] for pt in line]], k=3)
smoothed_wound_parametric = lambda t, d: inter.splev(t, smoothed_tck, der = d)
# plot spline
exact_spline_pts = []
sampled_spline_pts = []
smoothed_spline_pts = []
for t_step in np.linspace(0, 1, 500):
exact_spline_pts.append(exact_wound_parametric(t_step, 0))
sampled_spline_pts.append(sampled_wound_parametric(t_step, 0))
smoothed_spline_pts.append(smoothed_wound_parametric(t_step, 0))
if viz:
img = Image.open(img_path)
img_np = np.asarray(img)
plt.imshow(img_np)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
# plt.plot([pt[1] for pt in spline_pts], [pt[0] for pt in spline_pts], color='r')
ax1.imshow(img_np)
ax1.plot([pt[1]/mm_per_pixel for pt in exact_spline_pts], [pt[0]/mm_per_pixel for pt in exact_spline_pts])
ax2.imshow(img_np)
ax2.plot([pt[1]/mm_per_pixel for pt in sampled_spline_pts], [pt[0]/mm_per_pixel for pt in sampled_spline_pts])
ax3.imshow(img_np)
ax3.plot([pt[1]/mm_per_pixel for pt in smoothed_spline_pts], [pt[0]/mm_per_pixel for pt in smoothed_spline_pts])
# plot side by side
plt.savefig("spline.png")
return sampled_spline_pts, sampled_tck
def line_to_spline_3d(line, sample_ratio=30, viz=False, s_factor=None):
x = line[:, 0] # x-coordinates of the shortest path
y = line[:, 1]
z = line[:, 2]
# define t based on cumulative dists
distances = np.sqrt(np.sum(np.diff(line, axis=0)**2, axis=1))
# Calculate cumulative distance
cumulative_distance = np.insert(np.cumsum(distances), 0, 0)
# Normalize t to range from 0 to 1
t = cumulative_distance / cumulative_distance[-1]
print(t)
# get spline in each dimension
x_spline = inter.UnivariateSpline(t, x, s=s_factor)
y_spline = inter.UnivariateSpline(t, y, s=s_factor)
z_spline = inter.UnivariateSpline(t, z, s=s_factor)
# print("plotting x")
# print(x)
# print(x.shape)
# # plt.close()
# print([i / len(x) for i in range(len(x))])
# plt.plot(np.array([i / len(x) for i in range(len(x))]), np.array(x))
# plt.plot([i / 100 for i in range(100)], [x_spline(i/100) for i in range(100)])
# plt.show()
return [x_spline, y_spline, z_spline]
if __name__ == "__main__":
box_method = True
for i in [7]:
img_path = f'chicken_images/image_left_00{i}.png'
line, mask, _ = img_to_line(img_path, box_method, i, viz=True)
#spline, tck = line_to_spline(line, img_path, viz=True)
# now run original pipeline