-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
166 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -149,12 +149,11 @@ configs/local/default.yaml | |
/data/ | ||
/logs/ | ||
.env | ||
/data | ||
|
||
# Aim logging | ||
.aim | ||
|
||
# Scripts | ||
*.sh | ||
|
||
# Ignore data | ||
data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
import os | ||
import numpy as np | ||
import torch | ||
import logging | ||
from torch.utils.data import Dataset | ||
from torch.utils.data import DataLoader | ||
|
||
from lightning import LightningModule | ||
from src import constants | ||
#from plato.bear.dataset.base_dataset import BaseDataset | ||
#from plato.bear.utils.shared_data import SharedData | ||
#from code import constants | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
class TPPDataModule(LightningModule): | ||
def __init__(self, datasets, data_dir, batch_size, num_workers, | ||
pin_memory=False, **kwargs): | ||
super().__init__() | ||
self.dataset = datasets['dataset'] | ||
self.num_classes = datasets['num_classes'] | ||
self.data_dir = data_dir | ||
self.batch_size = batch_size | ||
self.num_workers = num_workers | ||
self.pin_memory = pin_memory | ||
self.kwargs = kwargs | ||
|
||
def prepare_data(self): | ||
pass | ||
|
||
def setup(self, stage): | ||
self.train_dataset = TPPDataset( | ||
self.data_dir, self.dataset, self.num_classes, mode='train', **self.kwargs) | ||
self.val_dataset = TPPDataset( | ||
self.data_dir, self.dataset, self.num_classes, mode='val', **self.kwargs) | ||
self.test_dataset = TPPDataset( | ||
self.data_dir, self.dataset, self.num_classes, mode='test', **self.kwargs) | ||
|
||
def train_dataloader(self): | ||
return DataLoader( | ||
self.train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, | ||
shuffle=True, pin_memory=self.pin_memory) | ||
|
||
def val_dataloader(self): | ||
return DataLoader( | ||
self.val_dataset, batch_size=int(self.batch_size/4), num_workers=self.num_workers, | ||
shuffle=False, pin_memory=self.pin_memory) | ||
|
||
def test_dataloader(self): | ||
return DataLoader( | ||
self.test_dataset, batch_size=int(self.batch_size/4), num_workers=self.num_workers, | ||
shuffle=False, pin_memory=self.pin_memory) | ||
|
||
|
||
|
||
class TPPDataset(Dataset): | ||
synthetic_data = ['sin'] | ||
real_data = ['so_fold1', 'mooc', 'reddit', 'wiki', | ||
'uber_drop', 'taxi_times_jan_feb'] | ||
|
||
data_fixed_indices = { | ||
'retweet': [20000, 2000], 'mimic_fold1': [527, 58], 'so_fold1': [4777, 530] | ||
} | ||
|
||
def __init__(self, data_dir, dataset, num_classes, mode, **kwargs): | ||
''' | ||
data_dir: the root directory where all .npz files are. Default is /shared-data/TPP | ||
dataset: the name of a dataset | ||
mode: dataset type - [train, val, test] | ||
''' | ||
super(TPPDataset).__init__() | ||
self.mode = mode | ||
|
||
if dataset in self.synthetic_data: | ||
data_path = os.path.join(data_dir, 'synthetic', dataset + '.npz') | ||
elif dataset in self.real_data: | ||
data_path = os.path.join(data_dir, 'real', dataset + '.npz') | ||
else: | ||
logger.error(f'{dataset} is not valid for dataset argument'); exit() | ||
|
||
use_marks = kwargs.get('use_mark', True) | ||
data_dict = dict(np.load(data_path, allow_pickle=True)) | ||
times = data_dict[constants.TIMES] | ||
marks = data_dict.get(constants.MARKS, np.ones_like(times)) | ||
masks = data_dict.get(constants.MASKS, np.ones_like(times)) | ||
if not use_marks: | ||
marks = np.ones_like(times) | ||
self._num_classes = num_classes | ||
|
||
if dataset not in self.data_fixed_indices: | ||
(train_size, val_size) = ( | ||
kwargs.get('train_size', 0.6), kwargs.get('val_size', 0.2)) | ||
else: | ||
train_size, val_size = self.data_fixed_indices[dataset] | ||
|
||
train_rate = kwargs.get('train_rate', 1.0) | ||
eval_rate = kwargs.get('eval_rate', 1.0) | ||
num_data = len(times) | ||
(start_idx, end_idx) = self._get_split_indices( | ||
num_data, mode=mode, train_size=train_size, val_size=val_size, | ||
train_rate=train_rate, eval_rate=eval_rate) | ||
|
||
self._times = torch.tensor( | ||
times[start_idx:end_idx], dtype=torch.float32).unsqueeze(-1) | ||
self._marks = torch.tensor( | ||
marks[start_idx:end_idx], dtype=torch.long).unsqueeze(-1) | ||
self._masks = torch.tensor( | ||
masks[start_idx:end_idx], dtype=torch.float32).unsqueeze(-1) | ||
|
||
def _sanity_check(self, time, mask): | ||
valid_time = time[mask.bool()] | ||
prev_time = valid_time[0] | ||
for i in range(1, valid_time.shape[0]): | ||
curr_time = valid_time[i] | ||
if curr_time < prev_time: | ||
logger.error(f'sanity check failed - prev time: {prev_time}, curr time: {curr_time}'); exit() | ||
logger.info('sanity check passed') | ||
|
||
def _get_split_indices(self, num_data, mode, train_size=0.6, val_size=0.2, | ||
train_rate=1.0, eval_rate=1.0): | ||
if mode == 'train': | ||
start_idx = 0 | ||
if train_size > 1.0: | ||
end_idx = int(train_size * train_rate) | ||
else: | ||
end_idx = int(num_data * train_size * train_rate) | ||
elif mode == 'val': | ||
if val_size > 1.0: | ||
start_idx = train_size | ||
end_idx = train_size + val_size | ||
else: | ||
start_idx = int(num_data * train_size) | ||
end_idx = start_idx + int(num_data * val_size * eval_rate) | ||
elif mode == 'test': | ||
if train_size > 1.0 and val_size > 1.0: | ||
start_idx = train_size + val_size | ||
else: | ||
start_idx = int(num_data * train_size) + int(num_data * val_size) | ||
end_idx = start_idx + int((num_data - start_idx) * eval_rate) | ||
else: | ||
logger.error(f'Wrong mode {mode} for dataset'); exit() | ||
return (start_idx, end_idx) | ||
|
||
def __getitem__(self, idx): | ||
time, mark, mask = self._times[idx], self._marks[idx], self._masks[idx] | ||
|
||
missing_mask = [] | ||
input_dict = { | ||
constants.TIMES: time, | ||
constants.MARKS: mark, | ||
constants.MASKS: mask, | ||
constants.MISSING_MASKS: missing_mask | ||
} | ||
return input_dict | ||
|
||
def __len__(self): | ||
return self._times.shape[0] | ||
|
||
@property | ||
def num_classes(self): | ||
return self._num_classes | ||
|
||
@property | ||
def num_seq(self): | ||
return self._times.shape[1] |