Skip to content

Commit

Permalink
Add lr_mult label to the network graph in draw_net.py (BVLC#6273)
Browse files Browse the repository at this point in the history
draw_net.py refactoring and optional LR visualization

* refactoring `get_layer_label`

rewrote the function body to make it more streamlined.
does not affect inputs and outputs

* optionally visualize LR when drawing the network

adds an option to `python/draw_net.py` that allows to visualize information
about the learning rate multiplier (if relevant) when drawing the network's
graph.
  • Loading branch information
nic25 authored and Noiredd committed Mar 7, 2018
1 parent 379a3ba commit 7b3ac40
Show file tree
Hide file tree
Showing 2 changed files with 112 additions and 38 deletions.
144 changes: 107 additions & 37 deletions python/caffe/draw.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,18 +59,60 @@ def get_edge_label(layer):
return edge_label


def get_layer_label(layer, rankdir):
def get_layer_lr_mult(layer):
"""Get the learning rate multipliers.
Get the learning rate multipliers for the given layer. Assumes a
Convolution/Deconvolution/InnerProduct layer.
Parameters
----------
layer : caffe_pb2.LayerParameter
A Convolution, Deconvolution, or InnerProduct layer.
Returns
-------
learning_rates : tuple of floats
the learning rate multipliers for the weights and biases.
"""
if layer.type not in ['Convolution', 'Deconvolution', 'InnerProduct']:
raise ValueError("%s layers do not have a "
"learning rate multiplier" % layer.type)

if not hasattr(layer, 'param'):
return (1.0, 1.0)

params = getattr(layer, 'param')

if len(params) == 0:
return (1.0, 1.0)

if len(params) == 1:
lrm0 = getattr(params[0],'lr_mult', 1.0)
return (lrm0, 1.0)

if len(params) == 2:
lrm0, lrm1 = [getattr(p,'lr_mult', 1.0) for p in params]
return (lrm0, lrm1)

raise ValueError("Could not parse the learning rate multiplier")


def get_layer_label(layer, rankdir, display_lrm=False):
"""Define node label based on layer type.
Parameters
----------
layer : ?
layer : caffe_pb2.LayerParameter
rankdir : {'LR', 'TB', 'BT'}
Direction of graph layout.
display_lrm : boolean, optional
If True include the learning rate multipliers in the label (default is
False).
Returns
-------
string :
node_label : string
A label for the current layer
"""

Expand All @@ -81,36 +123,54 @@ def get_layer_label(layer, rankdir):
else:
# If graph orientation is horizontal, vertical space is free and
# horizontal space is not; separate words with newlines
separator = '\\n'

if layer.type == 'Convolution' or layer.type == 'Deconvolution':
# Outer double quotes needed or else colon characters don't parse
# properly
node_label = '"%s%s(%s)%skernel size: %d%sstride: %d%spad: %d"' %\
(layer.name,
separator,
layer.type,
separator,
layer.convolution_param.kernel_size[0] if len(layer.convolution_param.kernel_size) else 1,
separator,
layer.convolution_param.stride[0] if len(layer.convolution_param.stride) else 1,
separator,
layer.convolution_param.pad[0] if len(layer.convolution_param.pad) else 0)
elif layer.type == 'Pooling':
separator = r'\n'

# Initializes a list of descriptors that will be concatenated into the
# `node_label`
descriptors_list = []
# Add the layer's name
descriptors_list.append(layer.name)
# Add layer's type
if layer.type == 'Pooling':
pooling_types_dict = get_pooling_types_dict()
node_label = '"%s%s(%s %s)%skernel size: %d%sstride: %d%spad: %d"' %\
(layer.name,
separator,
pooling_types_dict[layer.pooling_param.pool],
layer.type,
separator,
layer.pooling_param.kernel_size,
separator,
layer.pooling_param.stride,
separator,
layer.pooling_param.pad)
layer_type = '(%s %s)' % (layer.type,
pooling_types_dict[layer.pooling_param.pool])
else:
node_label = '"%s%s(%s)"' % (layer.name, separator, layer.type)
layer_type = '(%s)' % layer.type
descriptors_list.append(layer_type)

# Describe parameters for spatial operation layers
if layer.type in ['Convolution', 'Deconvolution', 'Pooling']:
if layer.type == 'Pooling':
kernel_size = layer.pooling_param.kernel_size
stride = layer.pooling_param.stride
padding = layer.pooling_param.pad
else:
kernel_size = layer.convolution_param.kernel_size[0] if \
len(layer.convolution_param.kernel_size) else 1
stride = layer.convolution_param.stride[0] if \
len(layer.convolution_param.stride) else 1
padding = layer.convolution_param.pad[0] if \
len(layer.convolution_param.pad) else 0
spatial_descriptor = separator.join([
"kernel size: %d" % kernel_size,
"stride: %d" % stride,
"pad: %d" % padding,
])
descriptors_list.append(spatial_descriptor)

# Add LR multiplier for learning layers
if display_lrm and layer.type in ['Convolution', 'Deconvolution', 'InnerProduct']:
lrm0, lrm1 = get_layer_lr_mult(layer)
if any([lrm0, lrm1]):
lr_mult = "lr mult: %.1f, %.1f" % (lrm0, lrm1)
descriptors_list.append(lr_mult)

# Concatenate the descriptors into one label
node_label = separator.join(descriptors_list)
# Outer double quotes needed or else colon characters don't parse
# properly
node_label = '"%s"' % node_label
return node_label


Expand All @@ -127,7 +187,7 @@ def choose_color_by_layertype(layertype):
return color


def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None):
def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None, display_lrm=False):
"""Create a data structure which represents the `caffe_net`.
Parameters
Expand All @@ -140,6 +200,9 @@ def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None):
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers when relevant (default is
False).
Returns
-------
Expand All @@ -164,7 +227,7 @@ def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None):
included = included and not layer_phase.phase == phase
if not included:
continue
node_label = get_layer_label(layer, rankdir)
node_label = get_layer_label(layer, rankdir, display_lrm=display_lrm)
node_name = "%s_%s" % (layer.name, layer.type)
if (len(layer.bottom) == 1 and len(layer.top) == 1 and
layer.bottom[0] == layer.top[0]):
Expand Down Expand Up @@ -202,7 +265,7 @@ def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None):
return pydot_graph


def draw_net(caffe_net, rankdir, ext='png', phase=None):
def draw_net(caffe_net, rankdir, ext='png', phase=None, display_lrm=False):
"""Draws a caffe net and returns the image string encoded using the given
extension.
Expand All @@ -214,16 +277,20 @@ def draw_net(caffe_net, rankdir, ext='png', phase=None):
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers for the learning layers
(default is False).
Returns
-------
string :
Postscript representation of the graph.
"""
return get_pydot_graph(caffe_net, rankdir, phase=phase).create(format=ext)
return get_pydot_graph(caffe_net, rankdir, phase=phase,
display_lrm=display_lrm).create(format=ext)


def draw_net_to_file(caffe_net, filename, rankdir='LR', phase=None):
def draw_net_to_file(caffe_net, filename, rankdir='LR', phase=None, display_lrm=False):
"""Draws a caffe net, and saves it to file using the format given as the
file extension. Use '.raw' to output raw text that you can manually feed
to graphviz to draw graphs.
Expand All @@ -238,7 +305,10 @@ def draw_net_to_file(caffe_net, filename, rankdir='LR', phase=None):
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers for the learning layers
(default is False).
"""
ext = filename[filename.rfind('.')+1:]
with open(filename, 'wb') as fid:
fid.write(draw_net(caffe_net, rankdir, ext, phase))
fid.write(draw_net(caffe_net, rankdir, ext, phase, display_lrm))
6 changes: 5 additions & 1 deletion python/draw_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,10 @@ def parse_args():
'TEST, or ALL. If ALL, then all layers are drawn '
'regardless of phase.'),
default="ALL")
parser.add_argument('--display_lrm', action='store_true',
help=('Use this flag to visualize the learning rate '
'multiplier, when non-zero, for the learning '
'layers (Convolution, Deconvolution, InnerProduct).'))

args = parser.parse_args()
return args
Expand All @@ -51,7 +55,7 @@ def main():
elif args.phase != "ALL":
raise ValueError("Unknown phase: " + args.phase)
caffe.draw.draw_net_to_file(net, args.output_image_file, args.rankdir,
phase)
phase, args.display_lrm)


if __name__ == '__main__':
Expand Down

0 comments on commit 7b3ac40

Please sign in to comment.