Skip to content

Bungehurst/3-DoF-Robot-Arm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3-DoF Robot Arm Simulation and Trajectory Planning

This project involves a 3-DoF robot arm forward & inverse kinematics simulation and trajectory planning.

Coordinates Definition under D-H Method

A 3-DoF robot arm is given as follows:

Forward Kinematics

The FK is designed to simulate robot arm movement.

$$_0^1T=\left[\begin{matrix}- \sin{\left(\theta_{1} \right)} & - \cos{\left(\theta_{1} \right)} & 0 & 0\\\cos{\left(\theta_{1} \right)} & - \sin{\left(\theta_{1} \right)} & 0 & 0\\0 & 0 & 1 & h_{1}\\0 & 0 & 0 & 1\end{matrix}\right]$$ $$_1^2T=\left[\begin{matrix}\cos{\left(\delta_{\theta} - \theta_{2} \right)} & \sin{\left(\delta_{\theta} - \theta_{2} \right)} & 0 & 0\\0 & 0 & -1 & 0\\- \sin{\left(\delta_{\theta} - \theta_{2} \right)} & \cos{\left(\delta_{\theta} - \theta_{2} \right)} & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right]$$ $$_2^3T=\left[\begin{matrix}- \sin{\left(\delta_{\theta} + \theta_{3} \right)} & - \cos{\left(\delta_{\theta} + \theta_{3} \right)} & 0 & \sqrt{h_{2}^{2} + h_{3}^{2}}\\\cos{\left(\delta_{\theta} + \theta_{3} \right)} & - \sin{\left(\delta_{\theta} + \theta_{3} \right)} & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{matrix}\right]$$ $$_3^4T=\left[\begin{matrix}1 & 0 & 0 & 0\\0 & 0 & -1 & - h_{4}\\0 & 1 & 0 & 0\\0 & 0 & 0 & 1\end{matrix}\right]$$

Inverse Kinematics

The IK is designed for task space trajectory tracking. In this project, we deployed both analytical and numerical IK. The analytical method gives lower tracking errors while requiring more computational resources. The numerical method runs faster while it may fall into a local optimum.

Trajectory of analytical IK

Position error for analytical IK

Trajectory of numerical IK

Position error for numerical IK

Trajectory Planning

Trajectory planning involves three types of curves, which are cubic, quintic and parabolic. The higher order curve we use, the smooth the trajectory will be.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages