Code to reproduce experiments in "Target-Related Alpha Attenuation in a Brain-Computer Interface Rapid Serial Visual Presentation Calibration"
Depends on python3.7+. See https://github.com/CAMBI-tech/BciPy for other transitive dependencies.
Create a virtualenv environment for the project and install required packages with:
python3 -m virtualenv venv
source venv/bin/activate
python -m pip install --upgrade pip setuptools wheel
python -m pip install -r requirements.txt
To request access to the data used for these experiments, please contact us at https://www.cambi.tech/contact.
Data should be stored in data
with the following structure:
data/bcipy_recordings
├── <SUBJECT_ID_0> # Subject ID
│ ├── <SESSION_0_1Hz> # Recording session with 1 Hz stimulus
│ │ ├── parameters.json # Experimental configuration
│ │ ├── raw_data.csv # Raw EEG data
│ │ └── triggers.txt # Stimulus timing data
│ └── <SESSION_0_4Hz> # Recording session with 4 Hz stimulus
│ └── ...
├── <SUBJECT_ID_1>
│ └── ...
...
└── <SUBJECT_ID_N>
To run this code with data from another source, replace the load_data
function in alpha_experiment.py with a function that loads data from the desired source.
Your function must produce data with shape (trials, channels, samples)
.
Given a folder of data for a single subject, and an integer individual alpha frequency (IAF), reproduce experiments on alpha-band classifiers with:
source venv/bin/activate
python alpha/alpha_experiment.py --input <PATH/TO/DATA> --output <PATH/TO/RESULTS> --freq <IAF>
Similarly, to reproduce baseline experiments using BciPy's current PCA/RDA/KDE P300 classifier, run:
source venv/bin/activate
python alpha/baseline.py --input <PATH/TO/DATA> --output <PATH/TO/RESULTS>