Skip to content

ChangLee0903/SERIL

Repository files navigation

SERIL: Noise Adaptive Speech Enhancement using Regularization based Incremental Learning - Official PyTorch Implementation

This is the original Pytorch implementation for our paper. Our work focuses on building a noise adaptive speech enhancement technique with an incremental strategy to reduce catastrophic forgetting problem, complementing existing noise adaptation strategies without using additional storage.

Contents

Installation

In order to install SERIL, clone the repo and install it using pip or python :

git clone https://github.com/ChangLee0903/SERIL
cd SERIL
# Install install-required deps
pip install numpy Cython
# Install all the necessary packages
pip install -r requirements.txt

Steps and Usages

  1. Data Preprocess:

    You can mix your own data by using adnoise function in util.py and set the data path in config/config.yaml.

    • Prepare noisy wavs directory, e.g. "../train/noisy_T0/", "../dev/noisy_T0/", "../test/noisy_T0/"
    • Prepare clean wavs directory, e.g. "../train/clean_T0/", "../dev/clean_T0/", "../test/clean_T0/"
    train: 
     noisy:
       ['../train/noisy_T0', '../train/noisy_T1', '../train/noisy_T2', '../train/noisy_T3', '../train/noisy_T4']
     clean:
       ['../train/clean_T0', '../train/clean_T1', '../train/clean_T2', '../train/clean_T3', '../train/clean_T4']
     ...
     

    Make sure that both noisy and clean directory have the same wave file names.

    ../train/noisy_T0/p226_006.wav
    ../train/clean_T0/p226_006.wav
    ...
  2. Train the networks for each domain sequentially:

    Note that the utterances of first domain will be taken as the training data of pretrain task which will train much longer than other domains, and both --mode finetune and --mode seril will share the same pretrain model.

    • Check log directory
    • Choose seril/naive fine-tuning mode
    • Run:
    python main.py --logdir log --do train --mode finetune
    python main.py --logdir log --do train --mode seril
    
  3. Inference:

    Make sure your --logdir log setting is the same with the training step.

    • Check log directory
    • Choose seril/naive fine-tuning mode
    • Run:
    python main.py --logdir log --do test --mode finetune
    python main.py --logdir log --do test --mode seril

Citation

If you find the code helpful in your research, please do consider cite us!

@inproceedings{SERIL,
  author={Chi-Chang Lee, Yu-Chen Lin, Hsuan-Tien Lin, Hsin-Min Wang, Yu Tsao},
  title={{SERIL:} Noise Adaptive Speech Enhancement using Regularization-based Incremental Learning},
  year=2020,
  booktitle={Proc. Interspeech},
}

Contact

Any bug report or improvement suggestion will be appreciated!

About

Official Implementation of SERIL in Pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages