Skip to content

Commit

Permalink
Update 2025.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Christophe-pere committed Jan 28, 2025
1 parent 2117e62 commit 038db91
Showing 1 changed file with 5 additions and 0 deletions.
5 changes: 5 additions & 0 deletions 2025/2025.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,25 +6,30 @@

- [Ahmed et al., 2025, Quantum Neural Networks: A Comparative Analysis and Noise Robustness Evaluation](https://arxiv.org/pdf/2501.14412)
- [Chen et al., 2025, Learning to Measure Quantum Neural Networks](https://arxiv.org/pdf/2501.05663)
- [Chen et al., 2025, Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions](https://arxiv.org/pdf/2501.15828)
- [Gerlach, et al. 2025, Hybrid Quantum-Classical Multi-Agent Pathfinding](https://arxiv.org/pdf/2501.14568)
- [Kairon & Jäger & Krems, 2025, Equivalence between exponential concentration in quantum machine learning kernels and barren plateaus in variational algorithms](https://arxiv.org/pdf/2501.07433)
- [Kasture et al., 2025, Multiparticle quantum walks for distinguishing hard graphs](https://arxiv.org/pdf/2501.03683)
- [Kemples et al., 2025, Double descent in quantum machine learning](https://arxiv.org/pdf/2501.10077)
- [Lee & Cho & Kim, 2025, Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum
Algorithms](https://arxiv.org/pdf/2501.05906)
- [Li, et al., 2025, Quantum Machine Learning of Molecular Energies with Hybrid Quantum-Neural Wavefunction](https://arxiv.org/pdf/2501.04264)
- [Meyer et al., 2025, Benchmarking Quantum Reinforcement Learning](https://arxiv.org/pdf/2501.15893)
- [Minervini & Patel & Wilde, 2025, Evolved Quantum Boltzmann Machines](https://arxiv.org/pdf/2501.03367)
- [Nadim et al., 2025, Comparative Analysis of Quantum and Classical Support Vector Classifiers for Software Bug Prediction: An Exploratory Study](https://arxiv.org/pdf/2501.04690)
- [Nakada & Tanahashi & Tanaka, 2025, Inductive Construction of Variational Quantum Circuit for Constrained Combinatorial Optimization](https://arxiv.org/pdf/2501.03521)
- [Nghiem, 2025, New Quantum Algorithm for Principal Component Analysis](https://arxiv.org/pdf/2501.07891)
- [Patel et al., 2025, Quantum Measurement for Quantum Chemistry on a Quantum Computer](https://arxiv.org/pdf/2501.14968)
- [Schetakis et al., 2025, Data re-uploading in Quantum Machine Learning for time series: application to traffic forecasting](https://arxiv.org/pdf/2501.12776)
- [Singh & Pokhrel, 2025, Modeling Quantum Machine Learning for Genomic Data Analysis](https://arxiv.org/pdf/2501.08193)
- [Singh & Pokhrel, 2025, Modeling Feature Maps for Quantum Machine Learning](https://arxiv.org/pdf/2501.08205)
- [Tibaldi et al., 2025, Analog QAOA with Bayesian Optimisation on a neutral atom QPU](https://arxiv.org/pdf/2501.16229)
- [Tomar & Tripathi & Kumar, 2025, Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements](https://arxiv.org/pdf/2501.09528)
- [Villar-Rodriguez et al., 2025, On the Transfer of Knowledge in Quantum Algorithms](https://arxiv.org/pdf/2501.14120)
- [Wang et al., 2025, GroverGPT: A Large Language Model with 8 Billion Parameters for Quantum Searching](https://arxiv.org/abs/2501.00135v1)
- [Wang, 2025, QGHNN: A quantum graph Hamiltonian neural network](https://arxiv.org/pdf/2501.07986)
- [Wang, 2025, Noise-resistant adaptive Hamiltonian learning](https://arxiv.org/pdf/2501.08017)
- [Xu & Aggarwal, 2025, Accelerating Quantum Reinforcement Learning with a Quantum Natural Policy Gradient Based Approach](https://arxiv.org/pdf/2501.16243)
- [Zimboràs et al., 2025, Myths around quantum computation before full fault tolerance: What no-go theorems rule out and what they don’t](https://arxiv.org/pdf/2501.05694)

#### Inspired
Expand Down

0 comments on commit 038db91

Please sign in to comment.