-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
78c29d2
commit 0d978db
Showing
2 changed files
with
187 additions
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
# What papers were published in 2022 in QML? | ||
|
||
|
||
### Papers | ||
#### 2021 | ||
|
||
- [ ] [Altares-Lopez & Ribeiro & Garcıa-Ripoll, 2021, Automatic design of quantum feature maps](https://arxiv.org/pdf/2105.12626.pdf) | ||
- [ ] [Asfaw et al., 2021, Building a Quantum Engineering Undergraduate Program](https://arxiv.org/pdf/2108.0131.pdf) | ||
- [ ] [Atchade-Adelomou et al., 2021, quantum Case-Based Reasoning (qCBR)](https://arxiv.org/abs/2104.00409) | ||
- [ ] [Beer et al., 2021, Quantum machine learning of graph-structured data](https://arxiv.org/pdf/2103.10837.pdf) | ||
- [ ] [Bharti et al. 2021, Noisy intermediate-scale quantum (NISQ) algorithms](https://arxiv.org/abs/2101.08448) | ||
- [ ] [Biamonte, 2021, On The Mathematical Structure of Quantum Models of Computation Based on Hamiltonian Minimisation](https://arxiv.org/pdf/2009.10088.pdf) | ||
- [ ] [Bondesan & Welling, 2021, The Hinton in your Neural Network: a Quantum Field Theory View of Deep Learning](https://arxiv.org/abs/2103.04913v1) | ||
- [ ] [Caro et al., 2021, Generalization in quantum machine learning from few training data](https://arxiv.org/abs/2111.05292) | ||
- [ ] [Choi & Oh & Kim, 2021, A Tutorial on Quantum Graph Recurrent Neural | ||
Network (QGRNN)](https://ieeexplore.ieee.org/document/9333917) | ||
- [ ] [Ding et al., 2021, Quantum Stream Learning](https://arxiv.org/pdf/2112.06628v1.pdf) | ||
- [ ] [Dutta et al., 2021, Single-qubit universal classifier implemented on an ion-trap quantum device](https://arxiv.org/pdf/2106.14059.pdf) | ||
- [ ] [Ezhov, 2021, On quantum Neural Networks](https://arxiv.org/pdf/2104.07106.pdf) | ||
- [ ] [Gratsea & Huembeli, 2021, Exploring Quantum Perceptron and Quantum Neural Network structures with a teacher-student scheme](https://arxiv.org/pdf/2105.01477.pdf) | ||
- [ ] [Henry et al., 2021, Quantum evolution kernel : Machine learning on graphs with programmable arrays of qubits](https://arxiv.org/pdf/2107.03247.pdf) | ||
- [ ] [Herbert, 2021, Quantum Monte-Carlo Integration: The Full Advantage in Minimal Circuit Depth](https://arxiv.org/abs/2105.09100) | ||
- [ ] [Highman & Bedford, 2021, Quantum Deep Learning: Sampling Neural Nets with a Quantum Annealer](https://arxiv.org/abs/2107.08710v1) | ||
- [ ] [Huang et al., 2021, Quantum advantage in learning from experiments](https://arxiv.org/abs/2112.00778) | ||
- [ ] [Huang et al., 2021, The power of data in quantum machine learning](https://www.nature.com/articles/s41467-021-22539-9) | ||
- [ ] [Huggins et al., 2021, Efficient and noise resilient measurements for quantum | ||
chemistry on near-term quantum computers](https://www.nature.com/articles/s41534-020-00341-7.pdf) | ||
- [ ] [Jaderberg et al., 2021, Quantum self-supervised Learning](https://arxiv.org/abs/2103.14653) | ||
- [ ] [Kartsaklis et al., 2021, lambeq: An Efficient High-Level Python Library for Quantum NLP](https://www.arxiv.org/abs/2110.04236) | ||
- [ ] [Kerenedis, 2021, Quantum Algorithms for Unsupervised Machine Learning and Neural Networks](https://arxiv.org/pdf/2111.03598.pdf) | ||
- [ ] [Kyriienko & Paine & Elfving, 2021, Solving nonlinear differential equations with differentiable quantum circuits](https://arxiv.org/pdf/2011.10395.pdf) | ||
- [ ] [Li & Deng, 2021, Recent advances for quantum classifiers](https://arxiv.org/pdf/2108.13421.pdf) | ||
- [ ] [Liu et al., 2021, Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers](https://arxiv.org/abs/2102.05566) | ||
- [ ] [Lopatnikova, Tran and Sisson, 2021, An Introduction to Quantum Computing for Statisticians and Data Scientists](https://arxiv.org/abs/2112.06587) | ||
- [ ] [Martyn et al., 2021, Grand Unification of Quantum Algorithms](https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.040203) | ||
- [ ] [Massoli et al., 2021, A Leap among Entanglement and Neural Networks: A Quantum Survey](https://arxiv.org/abs/2107.03313) | ||
- [ ] [Motta & Rice, 2021, Emerging quantum computing algorithms for quantum chemistry](https://arxiv.org/pdf/2109.02873.pdf) | ||
- [ ] [Perlin et al., 2021, Quantum circuit cutting with maximum-likelihood tomography](https://www.nature.com/articles/s41534-021-00390-6) | ||
- [ ] [Perrier, Youssry and Ferrie, 2021, QDataset: Quantum Datasets for Machine Learning](https://arxiv.org/abs/2108.06661) [GitHub](https://github.com/eperrier/QDataSet) | ||
- [ ] [Qian et al., 2021, The dilemma of quantum neural networks](https://arxiv.org/pdf/2106.04975.pdf) | ||
- [ ] [Roget, Di Molfetta and Kadri, 2021, Quantum Perceptron Revisited: Computational-Statistical Tradeoffs](https://arxiv.org/pdf/2106.02496.pdf) | ||
- [ ] [Schuld, 2021, Supervised quantum machine learning models are kernel methods](https://arxiv.org/abs/2101.11020) | ||
- [ ] [Tacchino et al., 2021, Variational learning for quantum artificial neural networks](https://arxiv.org/pdf/2103.02498.pdf) | ||
- [ ] [Wei et al., 2021, A Quantum Convolutional Neural Network on NISQ Devices](https://arxiv.org/pdf/2104.06918.pdf) | ||
- [ ] [Wossnig, 2021, Quantum Machine Learning For Classical Data](https://arxiv.org/pdf/2105.03684.pdf) | ||
- [ ] [Yarkoni et al., 2021, Quantum Annealing for Industry Applications: Introduction and Review](https://arxiv.org/abs/2112.07491) | ||
|
||
|
||
#### 2020 | ||
- [ ] [Abbas et al. 2020, The power of quantum neural networks](https://arxiv.org/abs/2011.00027) | ||
- [ ] [Abbas et al. 2020, On quantum ensemble of quantum classifiers](https://arxiv.org/abs/2001.10833) | ||
- [ ] [Arthur & Date, 2020, Balanced k-Means Clustering on an Adiabatic Quantum Computer](https://arxiv.org/pdf/2008.04419.pdf) | ||
- [ ] [Bausch, 2020, Recurrent Quantum Neural Network](https://arxiv.org/pdf/2006.14619.pdf) | ||
- [ ] [Beer et al., 2020, Training deep quantum neural networks](https://www.nature.com/articles/s41467-020-14454-2.pdf) | ||
- [ ] [Cerezo et al., 2020, Variational Quantum Algorithms](https://arxiv.org/abs/2012.09265) | ||
- [ ] [Chen, Yoo and Fang, 2020, Quantum Long Short Term Memory](https://arxiv.org/abs/2009.01783) | ||
- [ ] [Fujii et al. 2020, Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers](https://arxiv.org/abs/2007.10917) | ||
- [ ] [Gabor et al., 2020, The Holy Grail of Quantum Artificial Intelligence: Major Challenges in Accelerating the Machine Learning Pipeline](https://arxiv.org/abs/2004.14035) | ||
- [ ] [Garg & Ramakrishnan, 2020, Advances in Quantum Deep Learning: An Overview](https://arxiv.org/pdf/2005.04316.pdf) | ||
- [ ] [Gentile et al., 2020, Learning models of quantum systems from experiments](https://arxiv.org/abs/2002.06169) | ||
- [ ] [Khairy et al., 2020, Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems](https://ojs.aaai.org//index.php/AAAI/article/view/5616) | ||
- [ ] [Liu et al., 2020, Efficient quantum algorithm for dissipative nonlinear differential equations](https://arxiv.org/abs/2011.03185) | ||
- [ ] [Oliviera et al., 2020, Quantum One-class Classification With a Distance-based Classifier](https://arxiv.org/pdf/2007.16200.pdf) | ||
- [ ] [Pan et al., 2020, Experimental semi-autonomous eigensolver using reinforcement learning](https://arxiv.org/pdf/2007.15521.pdf) | ||
- [ ] [Perelshtein et al., 2020, Large-scale quantum hybrid solution for linear systems of equations](https://arxiv.org/pdf/2003.12770.pdf) | ||
- [ ] [Pérez-Salinas et al., 2020, Data re-uploading for a universal quantum classifier](https://quantum-journal.org/papers/q-2020-02-06-226/?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound) | ||
- [ ] [Poland, Beer and Osborne, 2020, No Free Lunch for Quantum Machine Learning](https://arxiv.org/pdf/2003.14103.pdf) | ||
- [ ] [Schuld, Sweke, Meyer, 2020, The effect of data encoding on the expressive power of variational quantum machine learning models](https://arxiv.org/abs/2008.08605) | ||
- [ ] [Tang et al., 2020, CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations](https://arxiv.org/abs/2012.02333) | ||
- [ ] [Wang et al., 2020, Noise-Induced Barren Plateaus in Variational Quantum Algorithms](https://arxiv.org/pdf/2007.14384.pdf) | ||
- [ ] [Xia et al., 2020, Quantum-enhanced data classification with a variational entangled sensor network](https://arxiv.org/abs/2006.11962) | ||
- [ ] [Zhang & Ni, 2020, Recent Advances in Quantum Machine Learning](https://eprints.lancs.ac.uk/id/eprint/154554/1/QML_survey.pdf) | ||
|
||
#### 2019 | ||
- [ ] [Benedetti et al., 2019, Parameterized quantum circuits as machine learning models](https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5/meta) | ||
- [ ] [Havlicek et al., 2019, Supervised learning with quantum enhanced feature spaces](https://arxiv.org/abs/1804.11326) | ||
- [ ] [Orus, Mugel, Lizaso, 2019, Quantum computing for finance: Overview and prospects](https://reader.elsevier.com/reader/sd/pii/S2405428318300571?token=28567476E673DC1C0822AC2F1154825443428F74A17965BB0E4D30561A2E7C12D38E491BF32236FCE86B36A40EF401FC&originRegion=us-east-1&originCreation=20220629022528) | ||
- [ ] [Tacchino et al., 2019, An artificial neuron implemented on an actual quantum processor](https://www.nature.com/articles/s41534-019-0140-4.pdf) | ||
- [ ] [Verdon et al., 2019, Learning to learn with quantum neural networks via classical neural networks](https://arxiv.org/abs/1907.05415) | ||
- [ ] [Verdon et al. 2019, Quantum Graph Neural Networks](https://arxiv.org/abs/1909.12264) | ||
- [ ] [Wang et al., 2019, Quantized Generative Adversarial Network](https://arxiv.org/abs/1901.08263) | ||
- [ ] [Zoufal, Lucchi and Werner, 2019, Quantum Generative Adversarial Networks for learning and loading random distributions](https://www.nature.com/articles/s41534-019-0223-2) | ||
|
||
#### 2018 | ||
- [ ] [Bergholm et al., 2018, PennyLane: Automatic differentiation of hybrid quantum-classical computations](https://arxiv.org/abs/1811.04968) | ||
- [ ] [Cao et al., 2022, Quantum Chemistry in the Age of Quantum Computing](https://arxiv.org/abs/1812.09976) | ||
- [ ] [Cortese & Braje, 2018, Loading Classical Data into a Quantum Computer](https://arxiv.org/pdf/1803.01958.pdf) | ||
- [ ] [Kopczyk, 2018, Quantum Machine Learning for data scientists](https://arxiv.org/abs/1804.10068) | ||
- [ ] [Schuld & Killoran, 2018, Quantum machine learning in feature Hilbert spaces](https://arxiv.org/abs/1803.07128) | ||
- [ ] [Zhao et al., 2018, Bayesian Deep Learning on a Quantum Computer](https://arxiv.org/pdf/1806.11463.pdf)[GitHub](https://gitlab.com/apozas/bayesian-dl-quantum) | ||
|
||
#### 2007-2017 | ||
- [ ] [Arunachalam & de Wolf, 2017, A Survey of Quantum Learning Theory](https://arxiv.org/abs/1701.06806) | ||
- [ ] [Cao, Guerreschi, Aspuru-Guzik, 2017, Quantum Neuron: an elementary building block for machine learning on quantum computers](https://arxiv.org/abs/1711.11240)[Github](https://github.com/inJeans/qnn) | ||
- [ ] [Dunjko & Briegel, 2017, Machine learning & artificial intelligence in the quantum domain](https://arxiv.org/pdf/1709.02779.pdf) | ||
- [ ] [Liu & Rebentrost, 2017, Quantum machine learning for quantum anomaly detection](https://arxiv.org/abs/1710.07405) | ||
- [ ] [Otterbach et al., 2017, Unsupervised Machine Learning on a Hybrid Quantum Computer](https://arxiv.org/abs/1712.05771)[GitHub](https://github.com/BOHRTECHNOLOGY/quantum_tsp) | ||
- [ ] [Perdomo-Ortiz et al. 2017, Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers](https://arxiv.org/abs/1708.09757) | ||
- [ ] [Biamonte et al., 2016, Quantum machine Learning](https://arxiv.org/abs/1611.09347) | ||
- [ ] [Montanaro 2016, Quantum algorithms: an overview](https://www.nature.com/articles/npjqi201523.pdf) | ||
- [ ] [Aaronson, 2015, Quantum Machine Learning Algorithms: Read the Fine Print](https://www.scottaaronson.com/papers/qml.pdf) | ||
- [ ] [Fahri & Goldstone, 2014, Quantum Approximate Optimization Algorithms](https://arxiv.org/pdf/1411.4028.pdf) | ||
- [ ] [Schuld, Synayskly and Petruccione, 2014, The quest for a Quantum Neural Network](https://arxiv.org/pdf/1408.7005.pdf) | ||
- [ ] [Schuld, Synayskly and Petruccione, 2014, Simulating a perceptron on a quantum computer](https://arxiv.org/abs/1412.3635) | ||
- [ ] [Schuld, Synayskly and Petruccione, 2014, An introduction to quantum machine learning](https://arxiv.org/abs/1409.3097) | ||
- [ ] [Wittek, 2014, Quantum Machine Learning: What Quantum Computing Means to Data Mining](https://www.researchgate.net/profile/Peter-Wittek/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_Data_Mining/links/5ababcfba6fdcc71647085db/Quantum-Machine-Learning-What-Quantum-Computing-Means-to-Data-Mining.pdf) | ||
- [ ] [Llyod, Mohseni, Rebentrost, 2013, Quantum algorithms for supervised and unsupervised machine learning](https://arxiv.org/abs/1307.0411) | ||
- [ ] [Sgarbas, 2007, The road to Quantum Artificial Intelligence](https://arxiv.org/pdf/0705.3360.pdf) | ||
|
||
--- | ||
|
||
### Quantum Workforce | ||
#### 2022 | ||
- [ ] [Kaur & Venegas-Gomez, 2022, Defining the quantum workforce landscape: a review of global quantum education initiatives](https://arxiv.org/pdf/2202.08940.pdf) | ||
- [ ] [Peron et al., 2022, Quantum Undergraduate Education and Scientific Training](https://arxiv.org/abs/2109.13850) | ||
|
||
#### 2021 | ||
- [ ] [Asfaw et al., 2022, Building a Quantum Engineering Undergraduate Program](https://arxiv.org/pdf/2108.01311.pdf) | ||
- [ ] [Dzurak et al., 2021, Development of an Undergraduate Quantum Engineering Degree](https://arxiv.org/pdf/2110.12598.pdf) | ||
- [ ] [Ozhigov 2021, Quantum computations (course of lectures)](https://arxiv.org/pdf/2107.08047.pdf) | ||
- [ ] [Siddhu & Tayur, 2021, Five Starter Pieces: Quantum Information Science via Semi-definite Programs](https://arxiv.org/pdf/2112.08276.pdf) | ||
- [ ] [Tang et al., 2021, Teaching quantum information technologies and a practical module for online and offline undergraduate students](https://arxiv.org/abs/2112.06548) | ||
|
||
--- | ||
|
||
### Blogs | ||
- [ ] [IEEE Spectrum, 2022, Quantum Error Correction](https://spectrum.ieee.org/quantum-error-correction) | ||
- [x] [Qiskit medium, 2022, We are releasing a free hands-on quantum machine learning course online](https://medium.com/qiskit/were-releasing-a-free-hands-on-quantum-machine-learning-course-online-c9313e78ea2d) | ||
- [ ] [Schuetz & Brubaker & Katzgraber, 2022, Combinatorial Optimization with Physics-Inspired Graph Neural Networks, Amazon Braket](https://aws.amazon.com/blogs/quantum-computing/combinatorial-optimization-with-physics-inspired-graph-neural-networks/) | ||
- [ ] [Albornoz, 2021, How to QML, Pennylane](https://pennylane.ai/blog/2021/10/how-to-start-learning-quantum-machine-learning/) | ||
- [ ] [Ceroni, 2021, The Quantum Graph Recurrent Neural Network, Pennylane](https://pennylane.ai/qml/demos/tutorial_qgrnn.html) | ||
- [ ] [Google AI Blog, 2021, Quantum Machine Learning and the Power of Data](http://ai.googleblog.com/2021/06/quantum-machine-learning-and-power-of.html "Quantum Machine Learning and the Power of Data") | ||
- [ ] [Dunjko et al., 2020, A non-review of Quantum Machine Learning: trends and explorations](https://quantum-journal.org/views/qv-2020-03-17-32/) | ||
- [ ] [Qunasys, Accelerating variational quantum algorithms](https://qunasys.medium.com/accelerating-variational-quantum-algorithms-147b9bf02dc0) | ||
- [ ] [What is quantum CNN?](https://analyticsindiamag.com/what-is-a-quantum-convolutional-neural-network/) | ||
- [ ] [IBM quantum research, At what cost can we simulate large quantum circuit on small quantum computers](https://research.ibm.com/blog/circuit-knitting-with-classical-communication) | ||
|
||
|
||
|
||
|
||
|
||
--- | ||
|
||
### Conferences | ||
- [ ] [Quantum Google AI, 2022, Quantum Summer Symposium](https://www.youtube.com/playlist?list=PLpO2pyKisOjLmyDOYwa8akgOHnCkXrKFg) | ||
- [ ] [QPL 2022, Quantum Physics and Logic](https://m.youtube.com/playlist?list=PLRW1t_lfNuYNRNgWnfUGwKhhWfIi2EpLe) | ||
- [ ] [QTML 2021](https://www.youtube.com/watch?v=meTsqSkNLKI&list=PLaEuBnOE7AzNoNoSWgxd594PzCpJA6cGz&index=1) | ||
- [ ] [Ijaz, An introduction to Quantum Machine Learning](https://www.youtube.com/watch?v=-DWng3jyBIM) | ||
- [ ] [Schuld, 2020, Quantum Machine Learning](https://www.youtube.com/watch?v=C_lBYKV_pJo) | ||
- [ ] [Schuld, 2020, QUantum Machine Learning and Pennylane](https://www.youtube.com/watch?v=pe1d0RyCNxY) | ||
- [ ] [Wittek, 2015, What Can We Expect from Quantum Machine Learning?](https://www.youtube.com/watch?v=EKWGLERVLuc) | ||
|
||
--- | ||
|
||
### MOOC | ||
- [ ] [Preskill, 2022, PH219, Quantum Computing](http://theory.caltech.edu/~preskill/ph219/ph219_2022.html) | ||
- [ ] [Peter Wittek, 2019, QML](https://www.youtube.com/playlist?list=PLmRxgFnCIhaMgvot-Xuym_hn69lmzIokg) | ||
- [ ] [Qiskit, 2022, QML](https://qiskit.org/learn/course/machine-learning-course) | ||
- [ ] [Qiskit, 2021, Quantum Machine Learning | 2021 Qiskit Global Summer School](https://www.youtube.com/playlist?list=PLOFEBzvs-VvqJwybFxkTiDzhf5E11p8BI) | ||
- [ ] [Pennylane, QML](https://pennylane.ai/qml/index.html) | ||
- [ ] [Xanadu, Codebook](https://codebook.xanadu.ai/) | ||
- [ ] [CERN, Elias Fernandez-Combarro Alvarez, "A practical introduction to quantum computing: from qubits to quantum machine learning and beyond" 7 lectures](https://indico.cern.ch/category/12909/) | ||
- [ ] [Llyod, 2016, Quantum Machine Learning](https://www.youtube.com/watch?v=Lbndu5EIWvI&t=3009s) | ||
|
||
--- | ||
|
||
### Libraries | ||
- [ ] [Qiskit](https://www.qiskit.org) | ||
- [ ] [Pennylane](https://pennylane.ai) | ||
- [ ] [Lambeq](https://github.com/CQCL/lambeq) | ||
- [ ] [Forest](https://github.com/rigetti/forest-software) | ||
- [ ] [Tensorflow-quantum](https://www.tensorflow.org/quantum) | ||
- [ ] [Braket](https://github.com/aws/amazon-braket-sdk-python) | ||
- [ ] [Cirq](https://quantumai.google/cirq) | ||
- [ ] [Ocean](https://github.com/dwavesystems/dwave-ocean-sdk) | ||
- [ ] [Strawberry Fields](https://github.com/xanaduai/strawberryfields) | ||
- [ ] [Q#](https://azure.microsoft.com/en-ca/resources/development-kit/quantum-computing/) | ||
- [ ] [OpenQAOA](https://arxiv.org/pdf/2210.08695.pdf) | ||
|
||
--- | ||
|
||
### IBM List of papers | ||
[IBM, Qiskit papers](https://airtable.com/shr5QnbLgraHRPx35/tblqDKDgMVdH6YGSE) | ||
|
||
|
Oops, something went wrong.