Skip to content

Commit

Permalink
Update 2025.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Christophe-pere committed Feb 28, 2025
1 parent f65ebeb commit 19c2170
Showing 1 changed file with 6 additions and 0 deletions.
6 changes: 6 additions & 0 deletions 2025/2025.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,17 @@
- [Asaoka & Kudo, 2025, Quantum autoencoders for image classification](https://arxiv.org/pdf/2502.15254)
- [Babu et al., 2025, Gate teleportation-assisted routing for quantum algorithms](https://arxiv.org/pdf/2502.04138)
- [Bal et al., 2025, 1 Particle - 1 Qubit: Particle Physics Data Encoding for Quantum Machine Learning](https://arxiv.org/pdf/2502.17301)
- [Berti et al., 2025, Quantum Machine Learning in Precision Medicine and Drug Discovery -- A Game Changer for Tailored Treatments?](https://arxiv.org/pdf/2502.18639)
- [Chen et al., 2025, Learning to Measure Quantum Neural Networks](https://arxiv.org/pdf/2501.05663)
- [Chen et al., 2025, Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions](https://arxiv.org/pdf/2501.15828)
- [Coelho & Kruse & Rosskopf, 2025, Quantum-Efficient Kernel Target Alignment](https://arxiv.org/pdf/2502.08225)
- [Coroi & Oh, 2025, Exponential advantage in continuous-variable quantum state learning](https://arxiv.org/pdf/2501.17633)
- [Dell'Anna et al., 2025, Quantum Natural Gradient optimizer on noisy platforms: QAOA as a case study](https://arxiv.org/pdf/2502.20288)
- [Fleury & Lacomme, 2025, Quantum circuit for exponentiation of Hamiltonians: an algorithmic description based on tensor products](https://arxiv.org/pdf/2501.17780)
- [Galvão et al., 2025, Simulating Work Extraction in a Dinuclear Quantum Battery Using a Variational Quantum Algorithm](https://arxiv.org/pdf/2502.19331)
- [Galvis-Florez & Farooq & Särkkä, 2025, Provable Quantum Algorithm Advantage for Gaussian Process Quadrature](https://arxiv.org/pdf/2502.14467)
- [Gerlach, et al. 2025, Hybrid Quantum-Classical Multi-Agent Pathfinding](https://arxiv.org/pdf/2501.14568)
- [Hoch et al., 2025, Quantum machine learning with Adaptive Boson Sampling via post-selection](https://arxiv.org/pdf/2502.20305)
- [Joch & Uhrig & Fauseweh, 2025, Entanglement-informed Construction of Variational Quantum Circuits](https://arxiv.org/pdf/2501.17533)
- [Kairon & Jäger & Krems, 2025, Equivalence between exponential concentration in quantum machine learning kernels and barren plateaus in variational algorithms](https://arxiv.org/pdf/2501.07433)
- [Kasture et al., 2025, Multiparticle quantum walks for distinguishing hard graphs](https://arxiv.org/pdf/2501.03683)
Expand Down Expand Up @@ -51,11 +55,13 @@
- [Tomar & Tripathi & Kumar, 2025, Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements](https://arxiv.org/pdf/2501.09528)
- [Vasques & Paik & Cif, 2025, Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M type classification](https://arxiv.org/pdf/2502.06281)
- [Villar-Rodriguez et al., 2025, On the Transfer of Knowledge in Quantum Algorithms](https://arxiv.org/pdf/2501.14120)
- [Vyas & Santhanam, 2025, Extreme Events of Quantum Walks on Graphs](https://arxiv.org/pdf/2502.19355)
- [Wang et al., 2025, GroverGPT: A Large Language Model with 8 Billion Parameters for Quantum Searching](https://arxiv.org/abs/2501.00135v1)
- [Wang, 2025, QGHNN: A quantum graph Hamiltonian neural network](https://arxiv.org/pdf/2501.07986)
- [Wang, 2025, Noise-resistant adaptive Hamiltonian learning](https://arxiv.org/pdf/2501.08017)
- [Wang et al., 2025, Towards efficient quantum algorithms for diffusion probability models](https://arxiv.org/pdf/2502.14252)
- [Xu & Aggarwal, 2025, Accelerating Quantum Reinforcement Learning with a Quantum Natural Policy Gradient Based Approach](https://arxiv.org/pdf/2501.16243)
- [Zhang et al., 2025, Hamiltonian Learning at Heisenberg Limit for Hybrid Quantum Systems](https://arxiv.org/pdf/2502.20373)
- [Zia et al., 2025, Quantum extreme learning machines for photonic entanglement witnessing](https://arxiv.org/pdf/2502.18361)
- [Zimboràs et al., 2025, Myths around quantum computation before full fault tolerance: What no-go theorems rule out and what they don’t](https://arxiv.org/pdf/2501.05694)

Expand Down

0 comments on commit 19c2170

Please sign in to comment.