Skip to content

Commit

Permalink
Update 2025.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Christophe-pere committed Feb 14, 2025
1 parent 47df47e commit 5716ec9
Showing 1 changed file with 3 additions and 0 deletions.
3 changes: 3 additions & 0 deletions 2025/2025.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,11 @@
#### 2025

- [Ahmed et al., 2025, Quantum Neural Networks: A Comparative Analysis and Noise Robustness Evaluation](https://arxiv.org/pdf/2501.14412)
- [Arai & Kadowaki, 2025, Quantum Annealing Enhanced Markov-Chain Monte Carlo](https://arxiv.org/pdf/2502.08060)
- [Babu et al., 2025, Gate teleportation-assisted routing for quantum algorithms](https://arxiv.org/pdf/2502.04138)
- [Chen et al., 2025, Learning to Measure Quantum Neural Networks](https://arxiv.org/pdf/2501.05663)
- [Chen et al., 2025, Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions](https://arxiv.org/pdf/2501.15828)
- [Coelho & Kruse & Rosskopf, 2025, Quantum-Efficient Kernel Target Alignment](https://arxiv.org/pdf/2502.08225)
- [Coroi & Oh, 2025, Exponential advantage in continuous-variable quantum state learning](https://arxiv.org/pdf/2501.17633)
- [Fleury & Lacomme, 2025, Quantum circuit for exponentiation of Hamiltonians: an algorithmic description based on tensor products](https://arxiv.org/pdf/2501.17780)
- [Gerlach, et al. 2025, Hybrid Quantum-Classical Multi-Agent Pathfinding](https://arxiv.org/pdf/2501.14568)
Expand All @@ -23,6 +25,7 @@ Algorithms](https://arxiv.org/pdf/2501.05906)
- [Lipardi et al., 2025, Quantum Circuit Design using a Progressive Widening Enhanced Monte Carlo Tree Search](https://arxiv.org/pdf/2502.03962)
- [Liu et al., 2025, Quantum learning advantage on a scalable photonic platform](https://arxiv.org/pdf/2502.07770)
- [Lo & Hsu & Kuo, 2025, Unsupervised Feature Extraction and Reconstruction Using Parameterized Quantum Circuits](https://arxiv.org/pdf/2502.07667)
- [Mandal et al., 2025, Quantum Software Engineering and Potential of Quantum Computing in Software Engineering Research: A Review](https://arxiv.org/pdf/2502.08925)
- [Meyer et al., 2025, Benchmarking Quantum Reinforcement Learning](https://arxiv.org/pdf/2501.15893)
- [Minervini & Patel & Wilde, 2025, Evolved Quantum Boltzmann Machines](https://arxiv.org/pdf/2501.03367)
- [Montanez-Barrera & Michielsen & Neira, 2025, Evaluating the performance of quantum process units at large width and depth](https://arxiv.org/pdf/2502.06471)
Expand Down

0 comments on commit 5716ec9

Please sign in to comment.