Skip to content

Commit

Permalink
Update 2024.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Christophe-pere committed Nov 27, 2024
1 parent c605fce commit 85bb816
Showing 1 changed file with 5 additions and 0 deletions.
5 changes: 5 additions & 0 deletions 2024/2024.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
- [Acuaviva et al., 2024, Benchmarking Quantum Computers: Towards a Standard Performance Evaluation Approach](https://arxiv.org/pdf/2407.10941)
- [Ahmed & Tennie & Magri, 2024, Prediction of chaotic dynamics and extreme events: A recurrence-free quantum reservoir computing approach](https://arxiv.org/pdf/2405.03390)
- [Ai & Liu, 2024, Graph Neural Networks-based Parameter Design towards Large-ScaleSuperconducting Quantum Circuits for Crosstalk Mitigation](https://arxiv.org/pdf/2411.16354)
- [Akande & Senjean & Saubanere, 2024, Symmetry-preserved cost functions for variational quantum eigensolver](https://arxiv.org/pdf/2411.16915)
- [Akpinar & Islam & Oduncuoglu, 2024, Evaluating the Impact of Different Quantum Kernels on the Classification Performance of Support Vector Machine Algorithm: A Medical Dataset Application](https://arxiv.org/pdf/2407.09930)
- [Aktar et al., 2024, Graph Neural Networks for Parameterized Quantum Circuits Expressibility Estimation](https://arxiv.org/pdf/2405.08100)
- [Alexeev et al., 2024, Artificial Intelligence for Quantum Computing](https://arxiv.org/pdf/2411.09131)
Expand Down Expand Up @@ -38,6 +39,7 @@
- [Blenninger et al., 2024, Quantum Optimization for the Future Energy Grid: Summary and Quantum Utility Prospects](https://arxiv.org/pdf/2403.17495)
- [Bluhm & Caro & Oufkir, 2024, Hamiltonian Property Testing](https://arxiv.org/pdf/2403.02968)
- [Borle & Bhave, 2024, Biclustering a dataset using photonic quantum computing](https://arxiv.org/pdf/2405.18622)
- [Boulebnane et al., 2024, Applying the quantum approximate optimization algorithm to general constraint satisfaction problems](https://arxiv.org/pdf/2411.17442)
- [Bowles & Ahmed & Schuld, 2024, Better than classical? The subtle art of benchmarking quantum machine learning models](https://arxiv.org/pdf/2403.07059)
- [Bucher et al., 2024, Towards Robust Benchmarking of Quantum Optimization Algorithms](https://arxiv.org/pdf/2405.07624)
- [Calderón et al., 2024, Measurement-based quantum machine learning](https://arxiv.org/pdf/2405.08319)
Expand Down Expand Up @@ -133,8 +135,10 @@
- [Labay Mora, et al., 2024, Theoretical framework for quantum associative memories](https://arxiv.org/pdf/2408.14272)
- [Lai et al., 2024, Towards Arbitrary QUBO Optimization: Analysis of Classical and Quantum-Activated Feedforward Neural Networks](https://arxiv.org/pdf/2410.12636)
- [Larson & Menickelly & Shi, 2024, A Novel Noise-Aware Classical Optimizer for Variational Quantum Algorithms](https://arxiv.org/pdf/2401.10121)
- [Leclerc et al., 2024, Implementing transferable annealing protocols for combinatorial optimisation on neutral atom quantum processors: a case study on smart-charging of electric vehicles](https://arxiv.org/pdf/2411.16656)
- [Lee et al., 2024, Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension](https://arxiv.org/pdf/2403.19099)
- [Lee & Park, 2024, Quadratic speed-ups in quantum kernelized binary classification](https://arxiv.org/pdf/2403.17453)
- [Levenson-Falk & Shanto, 2024, A Review of Design Concerns in Superconducting Quantum Circuits](https://arxiv.org/pdf/2411.16967)
- [Li et al., 2024, Quantum molecular docking with quantum-inspired algorithm](https://arxiv.org/pdf/2404.08265)
- [Li, 2024, Variational methods for solving high dimensional quantum systems](https://arxiv.org/pdf/2404.11490)
- [Li & Tong, 2024, Exponential Quantum Advantage for Pathfinding in Regular Sunflower Graphs](https://arxiv.org/pdf/2407.14398)
Expand Down Expand Up @@ -193,6 +197,7 @@
- [Perrier, 2024, Quantum Geometric Machine Learning](https://arxiv.org/pdf/2409.04955)
- [Pirnay et al., 2024, An unconditional distribution learning advantage with shallow quantum circuits](https://arxiv.org/pdf/2411.15548)
- [Power & Guha, 2024, Feature Importance and Explainability in Quantum Machine Learning](https://arxiv.org/pdf/2405.08917)
- [Pranjic et al., 2024, Unsupervised Quantum Anomaly Detection on Noisy Quantum Processors](https://arxiv.org/pdf/2411.16970)
- [Razavinia & Haghighatdoost, 2024, A route to quantum computing through the theory of quantum graphs](https://arxiv.org/pdf/2404.13773)
- [Recio-Armengol & Eisert & Meyer, 2024, Single-shot quantum machine learning](https://arxiv.org/pdf/2406.13812)
- [Rodriguez-Grasa & Ban & Sanz, 2024, https://arxiv.org/pdf/2401.04784](https://arxiv.org/pdf/2401.04642)
Expand Down

0 comments on commit 85bb816

Please sign in to comment.