Skip to content

Commit

Permalink
Update 2024.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Christophe-pere committed Jul 16, 2024
1 parent d3a8f5a commit b4aff41
Showing 1 changed file with 6 additions and 0 deletions.
6 changes: 6 additions & 0 deletions 2024/2024.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,9 @@
#### 2024

- [Abbas & Maksymo, 2024, Reservoir Computing Using Measurement-Controlled Quantum Dynamics](https://arxiv.org/pdf/2403.01024)
- [Acuaviva et al., 2024, Benchmarking Quantum Computers: Towards a Standard Performance Evaluation Approach](https://arxiv.org/pdf/2407.10941)
- [Ahmed & Tennie & Magri, 2024, Prediction of chaotic dynamics and extreme events: A recurrence-free quantum reservoir computing approach](https://arxiv.org/pdf/2405.03390)
- [Akpinar & Islam & Oduncuoglu, 2024, Evaluating the Impact of Different Quantum Kernels on the Classification Performance of Support Vector Machine Algorithm: A Medical Dataset Application](https://arxiv.org/pdf/2407.09930)
- [Aktar et al., 2024, Graph Neural Networks for Parameterized Quantum Circuits Expressibility Estimation](https://arxiv.org/pdf/2405.08100)
- [Ali & Kabel, 2024, Piecewise Polynomial Tensor Network Quantum Feature Encoding](https://arxiv.org/pdf/2402.07671)
- [Aminpour & Sharif, 2024, Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance](https://arxiv.org/pdf/2405.09377)
Expand Down Expand Up @@ -55,10 +57,13 @@
- [Gacon, 2024, Scalable Quantum Algorithms for Noisy Quantum Computers](https://arxiv.org/pdf/2403.00940)
- [Garrigues & Onofre & Bosc-Haddad, 2024 Towards molecular docking with neutral atoms](https://arxiv.org/pdf/2402.06770)
- [Georgiou & Jose & Simeone, 2024, Adversarial Quantum Machine Learning: An Information-Theoretic Generalization Analysis](https://browse.arxiv.org/pdf/2402.00176)
- [Gerblich et al., 2024, Advantages of multistage quantum walks over QAOA](https://arxiv.org/pdf/2407.06663)
- [Gerlach & Mücke, 2024, Investigating the Relation Between Problem Hardness and QUBO Properties](https://arxiv.org/pdf/2404.02751)
- [Gil-Fuster et al., 2024, On the relation between trainability and dequantization of variational quantum learning models](https://arxiv.org/pdf/2406.07072)
- [Goldschmith & Mahmud, 2024, Machine Learning for Quantum Computing Specialists](https://arxiv.org/pdf/2404.18555)
- [Gonzales et al., 2024, Detecting Errors in a Quantum Network with Pauli Checks](https://arxiv.org/pdf/2405.15236)
- [Gosh & Gosh, 2024, The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models](https://arxiv.org/pdf/2407.07237)
- [Gratsea et al., 2024, OnionVQE Optimization Strategy for Ground State Preparation on NISQ Devices](https://arxiv.org/pdf/2407.10415)
- [Gustafson et al., 2024, Surrogate optimization of variational quantum circuits](https://arxiv.org/pdf/2404.02951)
- [He, 2024, Quantum Annealing and Graph Neural Networks for Solving TSP with QUB0](https://arxiv.org/pdf/2402.14036)
- [Hegde et al., 2024, Beyond the Buzz: Strategic Paths for Enabling Useful NISQ Applications](https://arxiv.org/pdf/2405.14561)
Expand Down Expand Up @@ -95,6 +100,7 @@
- [Liu et al., 2024, Quantum accelerated cross regression algorithm for multiview feature extraction](https://arxiv.org/pdf/2403.17444)
- [Liu et al., 2024, Quantum algorithms for matrix geometric means](https://arxiv.org/pdf/2405.00673)
- [Liu et al., 2024, First Tree-like Quantum Data Structure: Quantum B+ Tree](https://arxiv.org/pdf/2405.20416)
- [Liu et al., 2024, QTRL: Toward Practical Quantum Reinforcement Learning via Quantum-Train](https://arxiv.org/pdf/2407.06103)
- [Lu et al., 2024, Digital-analog quantum learning on Rydberg atom arrays](https://arxiv.org/pdf/2401.02940)
- [Lubinski et al., 2024, Quantum Algorithm Exploration using Application-Oriented Performance Benchmarks](https://arxiv.org/pdf/2402.08985)
- [Magnusson et al., 2024, Towards Efficient Quantum Computing for Quantum Chemistry: Reducing Circuit Complexity with Transcorrelated and Adaptive Ansatz Techniques](https://arxiv.org/pdf/2402.16659)
Expand Down

0 comments on commit b4aff41

Please sign in to comment.