Skip to content

Commit

Permalink
Update 2024.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Christophe-pere committed Jun 21, 2024
1 parent 88ab6f9 commit d406969
Showing 1 changed file with 4 additions and 0 deletions.
4 changes: 4 additions & 0 deletions 2024/2024.md
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@
- [Magnusson et al., 2024, Towards Efficient Quantum Computing for Quantum Chemistry: Reducing Circuit Complexity with Transcorrelated and Adaptive Ansatz Techniques](https://arxiv.org/pdf/2402.16659)
- [Makarov et al., 2024, Quantum Optimization Methods for Satellite Mission Planning](https://arxiv.org/pdf/2404.05516)
- [Matwiejew & Wang, 2024, Quantum walk informed variational algorithm design](https://arxiv.org/pdf/2406.11620)
- [Michel, 2024, Quantum simulation for strongly interacting fermions with neutral atoms array : towards the simulation of materials of interest](https://arxiv.org/pdf/2406.13343)
- [Minuto & Caletti & Solinas, 2024, A Novel Approach to Reduce Derivative Costs in Variational Quantum Algorithms](https://arxiv.org/pdf/2404.02245)
- [Mirani & Hayden, 2024, Learning interacting fermionic Hamiltonians at the Heisenberg limit](https://arxiv.org/pdf/2403.00069)
- [Mironowicz et al., 2024, Applications of Quantum Machine Learning for Quantitative Finance](https://arxiv.org/pdf/2405.10119)
Expand All @@ -125,6 +126,7 @@
- [Perlin et al., 2024, Q-CHOP: Quantum constrained Hamiltonian optimization](https://arxiv.org/pdf/2403.05653)
- [Power & Guha, 2024, Feature Importance and Explainability in Quantum Machine Learning](https://arxiv.org/pdf/2405.08917)
- [Razavinia & Haghighatdoost, 2024, A route to quantum computing through the theory of quantum graphs](https://arxiv.org/pdf/2404.13773)
- [Recio-Armengol & Eisert & Meyer, 2024, Single-shot quantum machine learning](https://arxiv.org/pdf/2406.13812)
- [Rodriguez-Grasa & Ban & Sanz, 2024, https://arxiv.org/pdf/2401.04784](https://arxiv.org/pdf/2401.04642)
- [Romero & Milburn, 2024, Photonic Quantum Computing](https://arxiv.org/pdf/2404.03367)
- [Rosenhahn & Hirche, 2024, Quantum Normalizing Flows for Anomaly Detection](https://arxiv.org/pdf/2402.02866)
Expand Down Expand Up @@ -177,10 +179,12 @@
- [Wold & Ribeiro & Denisov, 2024, Universal spectra of noisy parameterized quantum circuits](https://arxiv.org/pdf/2405.11625)
- [Wolf, 2024, Why we care (about quantum machine learning)](https://arxiv.org/pdf/2401.07547)
- [Wu et al., 2024, Python-Based Quantum Chemistry Calculations with GPU Acceleration](https://arxiv.org/pdf/2404.09452)
- [Yalovetzky et al., 2024, QC-Forest: a Classical-Quantum Algorithm to Provably Speedup Retraining of Random Forest](https://arxiv.org/pdf/2406.12008)
- [Yamamoto & Yoshioka, 2024, Robust Angle Finding for Generalized Quantum Signal Processing](https://arxiv.org/pdf/2402.03016)
- [Yang et al., 2024, Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning](https://arxiv.org/pdf/2405.12625)
- [Ye, 2024, QAOA on Hamiltonian Cycle problem](https://arxiv.org/pdf/2401.00017)
- [Yogendran et al., 2024, Big data applications on small quantum computers](https://arxiv.org/pdf/2402.01529)
- [Zalivako et al., 2024, Supervised binary classification of small-scale digits images with a trapped-ion quantum processor](https://arxiv.org/pdf/2406.12007)
- [Zaman et al., 2024, A Comparative Analysis of Hybrid-Quantum Classical Neural Networks](https://arxiv.org/pdf/2402.10540)
- [Zhang et al., 2024, A generalized cycle benchmarking algorithm for characterizing mid-circuit measurements](https://arxiv.org/pdf/2406.02669)
- [Zhang, Zhu & Wang, 2024, Predicting quantum learnability from landscape fluctuation](https://arxiv.org/pdf/2406.11805)
Expand Down

0 comments on commit d406969

Please sign in to comment.