Skip to content

Commit

Permalink
Small corrections
Browse files Browse the repository at this point in the history
  • Loading branch information
MarcusLenander authored and MarcusLenander committed Mar 22, 2019
1 parent 7d9b0e2 commit caa491c
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 8 deletions.
13 changes: 5 additions & 8 deletions Analys 2 Cheat Sheet.md → Analys 2 Cheet Sheet.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ m = \int_{x_1}^{x_2} \rho(x)*A(x) dx
$$
**Längd av kurva**
$$
L = \int_{t_1}^{t_2}\left(\left(\frac{dx}{dt}\right)^2+\left(\frac{dx}{dt}\right)^2\right)^{1/2}dt \\
L = \int_{t_1}^{t_2}\left(\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2\right)^{1/2}dt \\
$$

$$
Expand Down Expand Up @@ -277,9 +277,7 @@ $$
### 3 Längd av Kurva

$$
dL = \sqrt{(dx)^2+(dy)^2} = \left(\left(\frac{dx}{dt}\right)^2\left(\frac{dx}{dt}\right)^2\right)^{1/2}dt \\
\implies L = \int_{t_1}^{t_2}\left(\left(\frac{dx}{dt}\right)^2\left(\frac{dx}{dt}\right)^2\right)^{1/2}dt
L = \int_L \sqrt{(dx)^2+(dy)^2} = \int_L\sqrt{(dx)^2+(dy)^2}*\frac{dx}{dx} = \int_a^b\sqrt{\left(\frac{dx}{dx}\right)^2\left(\frac{dy}{dx}\right)^2} dx= \int_a^b \sqrt{1+(y')^2}dx
$$

### 4 Mantelarea
Expand All @@ -303,8 +301,7 @@ $$
### 6 Tröghetsmomentet

$$
dE = \frac{V^2}{2}dm = \frac{(\omega r)^2}{2}dm \\
E = \int_k \frac{\omega^2 r^2}{2}dm = \frac{\omega^2}{2}*\int_k r^2 dm \implies I = \int_k r^2 dm
2E = \int V^2dm = \int \omega^2r^2dm = \omega^2 \int r^2dm \implies I=\int r^2 dm
$$

### 7 Första ordningens diff
Expand Down Expand Up @@ -375,10 +372,10 @@ $$
$$
y'+g(x)y=f(x)y^n \\
y=Z^{\frac{1}{1-n}} \\
y'=\frac{1}{1-n}Z^{\frac{1}{1-n}-1}*Z' = \frac{Z^{\frac{1}{1-n}}*Z'}{1-n} \\
y'=\frac{Z^{\frac{1}{1-n}}*Z'}{1-n} \\
\text{Insättning ger} \\
\frac{Z^{\frac{1}{1-n}}*Z'}{1-n}+g(x)Z^{\frac{1}{1-n}} = f(x)Z^{\frac{n}{1-n}} \\
\frac{Z'}{1-n}+g(x)Z^{\frac{1}{1-n}-\frac{n}{1-n}} = f(x) \\
Z'+(1-n)g(x)Z=(1-n)f(x)
$$

Expand Down
Binary file not shown.

0 comments on commit caa491c

Please sign in to comment.