This repository contains the code for the paper "Boosting Perturbed Gradient Ascent for Last-Iterate Convergence in Games".
pip install -r requirements.txt
To run experiments, use the following command:
python main.py --multirun +experiment=<SETTING>/<GAME>/<METHOD>
In the above command, please select <SETTING>
, <GAME>
, and <METHOD>
from the options below:
<SETTING>
:full
(for full feedback) ornoisy
(for noisy feedback)<GAME>
:random_payoff
orhard_concave_convex
<METHOD>
:gabp
,apga
,og
, oraog
Specifically, to reproduce the results in our paper, run the following commands:
# Random Payoff Game with full feedback
python main.py --multirun +experiment=full/random_payoff/gabp,full/random_payoff/apga,full/random_payoff/og,full/random_payoff/aog
# Hard Concave-Convex Game with full feedback
python main.py --multirun +experiment=full/hard_concave_convex/gabp,full/hard_concave_convex/apga,full/hard_concave_convex/og,full/hard_concave_convex/aog
# Random Payoff Game with noisy feedback
python main.py --multirun +experiment=noisy/random_payoff/gabp,noisy/random_payoff/apga,noisy/random_payoff/og,noisy/random_payoff/aog
# Hard Concave-Convex Game with noisy feedback
python main.py --multirun +experiment=noisy/hard_concave_convex/gabp,noisy/hard_concave_convex/apga,noisy/hard_concave_convex/og,noisy/hard_concave_convex/aog
Kenshi Abe, Mitsuki Sakamoto, Kaito Ariu, and Atsushi Iwasaki. Boosting Perturbed Gradient Ascent for Last-Iterate Convergence in Games. In ICLR, 2025
Bibtex:
@inproceedings{abe2025boosting,
title={Boosting Perturbed Gradient Ascent for Last-Iterate Convergence in Games},
author={Kenshi Abe and Mitsuki Sakamoto and Kaito Ariu and Atsushi Iwasaki},
booktitle={ICLR},
year={2025},
url={https://openreview.net/forum?id=Jrt9iWalFy}
}