https://www.kaggle.com/moltean/fruits
https://github.com/codecentric/from-keras-to-production-workshop.git
docker pull codecentric/from-keras-to-production-baseimage
docker pull codecentric/tensorflow-serving-baseimage
docker pull puckel/docker-airflow # TODO check
# Für Linux/Mac
docker run -p 8888:8888 --mount type=bind,source=$(pwd)/notebooks,target=/keras2production/notebooks codecentric/from-keras-to-production-baseimage
# Für Windows
docker run -p 8888:8888 --mount type=bind,source=%cd%/notebooks,target=/keras2production/notebooks codecentric/from-keras-to-production-baseimage
docker run -p 8501:8501 -p 8500:8500 --mount type=bind,source=$(pwd)/notebooks/6-models/fruits/,target=/models/fruits -e MODEL_NAME=fruits -t tensorflow/serving:1.12.0
docker run -p 8080:8080 --mount type=bind,source=$(pwd)/notebooks/8-airflow,target=/usr/local/airflow/dags puckel/docker-airflow webserver
pip install -r requirements.txt
cd slides
jupyter nbconvert end2end_ds.ipynb --to slides --post serve --reveal-prefix=reveal.js
http://setosa.io/ev/image-kernels/
https://www.kaggle.com/moltean/fruits/kernels
https://ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html
https://www.youtube.com/watch?v=FCyZplb0ul4
https://github.com/fchollet/deep-learning-with-python-notebooks
https://jacobgil.github.io/deeplearning/class-activation-maps
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://keras.io/preprocessing/text/