Skip to content

DLuensch/from-keras-to-production-workshop

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

From Keras to Production

Daten

https://www.kaggle.com/moltean/fruits

Notebooks

https://github.com/codecentric/from-keras-to-production-workshop.git

Images pullen

docker pull codecentric/from-keras-to-production-baseimage
docker pull codecentric/tensorflow-serving-baseimage
docker pull puckel/docker-airflow  # TODO check

Jupyterlab starten

# Für Linux/Mac
docker run -p 8888:8888 --mount type=bind,source=$(pwd)/notebooks,target=/keras2production/notebooks codecentric/from-keras-to-production-baseimage

# Für Windows
docker run -p 8888:8888 --mount type=bind,source=%cd%/notebooks,target=/keras2production/notebooks codecentric/from-keras-to-production-baseimage

TensorFlow Serving starten

docker run -p 8501:8501 -p 8500:8500 --mount type=bind,source=$(pwd)/notebooks/6-models/fruits/,target=/models/fruits -e MODEL_NAME=fruits -t tensorflow/serving:1.12.0

Airflow starten

docker run -p 8080:8080 --mount type=bind,source=$(pwd)/notebooks/8-airflow,target=/usr/local/airflow/dags puckel/docker-airflow webserver

Run slides

pip install -r requirements.txt
cd slides
jupyter nbconvert end2end_ds.ipynb --to slides --post serve --reveal-prefix=reveal.js

References and further information

Image Kernels

http://setosa.io/ev/image-kernels/

Kaggle dataset

https://www.kaggle.com/moltean/fruits/kernels

IPython and Jupyterlab

https://ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html

Reinforcement Learning

https://www.youtube.com/watch?v=FCyZplb0ul4

Free Notebooks from Deep Learning with Python Book

https://github.com/fchollet/deep-learning-with-python-notebooks

Visualization of activation maps

https://jacobgil.github.io/deeplearning/class-activation-maps

Combining channels in convolutional layers

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Using pre-trained word embeddings in a Keras model

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

Text Preprocessing

https://keras.io/preprocessing/text/

Keras examples

https://github.com/keras-team/keras/tree/master/examples

What’s your ML test score? A rubric for ML production systems

https://ai.google/research/pubs/pub45742

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 73.6%
  • HTML 11.4%
  • JavaScript 8.6%
  • CSS 6.2%
  • Python 0.2%