-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Dataset training with Neural Network models
Dataset training code along with the Neural Network model to train data is there in 'Training code'
- Loading branch information
Showing
1 changed file
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
from __future__ import print_function | ||
|
||
from keras.layers import Conv2D, MaxPooling2D | ||
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization | ||
from keras.models import Sequential | ||
from keras.preprocessing.image import ImageDataGenerator | ||
|
||
num_classes = 5 | ||
img_rows,img_cols = 48,48 | ||
batch_size = 32 | ||
|
||
train_data_dir = r"C:\Users\Synergiz\PycharmProjects\Emotion_Rec\train" | ||
validation_data_dir = r"C:\Users\Synergiz\PycharmProjects\Emotion_Rec\validation" | ||
|
||
train_datagen = ImageDataGenerator( | ||
rescale=1./255, | ||
rotation_range=30, | ||
shear_range=0.3, | ||
zoom_range=0.3, | ||
width_shift_range=0.4, | ||
height_shift_range=0.4, | ||
horizontal_flip=True, | ||
fill_mode='nearest') | ||
|
||
validation_datagen = ImageDataGenerator(rescale=1./255) | ||
|
||
train_generator = train_datagen.flow_from_directory( | ||
train_data_dir, | ||
color_mode='grayscale', | ||
target_size=(img_rows,img_cols), | ||
batch_size=batch_size, | ||
class_mode='categorical', | ||
shuffle=True) | ||
|
||
validation_generator = validation_datagen.flow_from_directory( | ||
validation_data_dir, | ||
color_mode='grayscale', | ||
target_size=(img_rows,img_cols), | ||
batch_size=batch_size, | ||
class_mode='categorical', | ||
shuffle=True) | ||
|
||
|
||
model = Sequential() | ||
|
||
# Block-1 | ||
|
||
model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1))) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1))) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(MaxPooling2D(pool_size=(2,2))) | ||
model.add(Dropout(0.2)) | ||
|
||
# Block-2 | ||
|
||
model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(MaxPooling2D(pool_size=(2,2))) | ||
model.add(Dropout(0.2)) | ||
|
||
# Block-3 | ||
|
||
model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(MaxPooling2D(pool_size=(2,2))) | ||
model.add(Dropout(0.2)) | ||
|
||
# Block-4 | ||
|
||
model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(MaxPooling2D(pool_size=(2,2))) | ||
model.add(Dropout(0.2)) | ||
|
||
# Block-5 | ||
|
||
model.add(Flatten()) | ||
model.add(Dense(64,kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(Dropout(0.5)) | ||
|
||
# Block-6 | ||
|
||
model.add(Dense(64,kernel_initializer='he_normal')) | ||
model.add(Activation('elu')) | ||
model.add(BatchNormalization()) | ||
model.add(Dropout(0.5)) | ||
|
||
# Block-7 | ||
|
||
model.add(Dense(num_classes,kernel_initializer='he_normal')) | ||
model.add(Activation('softmax')) | ||
|
||
print(model.summary()) | ||
|
||
from keras.optimizers import Adam | ||
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau | ||
|
||
checkpoint = ModelCheckpoint(r'C:\Users\Synergiz\PycharmProjects\Emotion_Rec\Emo_little-h5', | ||
monitor='val_loss', | ||
mode='min', | ||
save_best_only=True, | ||
verbose=1) | ||
|
||
earlystop = EarlyStopping(monitor='val_loss', | ||
min_delta=0, | ||
patience=3, | ||
verbose=1, | ||
restore_best_weights=True | ||
) | ||
|
||
reduce_lr = ReduceLROnPlateau(monitor='val_loss', | ||
factor=0.2, | ||
patience=3, | ||
verbose=1, | ||
min_delta=0.0001) | ||
|
||
callbacks = [earlystop,checkpoint,reduce_lr] | ||
|
||
model.compile(loss='categorical_crossentropy', | ||
optimizer = Adam(lr=0.001), | ||
metrics=['accuracy']) | ||
|
||
nb_train_samples = 24176 | ||
nb_validation_samples = 3006 | ||
epochs=25 | ||
|
||
history=model.fit( | ||
train_generator, | ||
steps_per_epoch=nb_train_samples//batch_size, | ||
epochs=epochs, | ||
callbacks=callbacks, | ||
validation_data=validation_generator, | ||
validation_steps=nb_validation_samples//batch_size) | ||
|