Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pandas update #121

Merged
merged 6 commits into from
Mar 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def calculate_version():
'update_checker>=0.16',
'tqdm>=4.36.1',
'stopit>=1.1.1',
'pandas>=1.5.3,<2.0.0',
'pandas>=2.2.0',
'joblib>=1.1.1',
'xgboost>=1.7.0',
'matplotlib>=3.6.2',
Expand Down
21 changes: 11 additions & 10 deletions tpot2/evolvers/base_evolver.py
Original file line number Diff line number Diff line change
Expand Up @@ -483,9 +483,10 @@ def optimize(self, generations=None):
except KeyboardInterrupt:
if self.verbose >= 3:
print("KeyboardInterrupt")

self.population.remove_invalid_from_population(column_names=self.objective_names, invalid_value="INVALID")
self.population.remove_invalid_from_population(column_names=self.objective_names, invalid_value="TIMEOUT")
self.population.remove_invalid_from_population(column_names="Eval Error", invalid_value="INVALID")
self.population.remove_invalid_from_population(column_names="Eval Error", invalid_value="TIMEOUT")



Expand Down Expand Up @@ -623,17 +624,17 @@ def evaluate_population_full(self, budget=None):
parallel_timeout = 10

#scores = tpot2.utils.eval_utils.parallel_eval_objective_list(individuals_to_evaluate, self.objective_functions, self.n_jobs, verbose=self.verbose, timeout=self.max_eval_time_seconds, budget=budget, n_expected_columns=len(self.objective_names), client=self._client, parallel_timeout=parallel_timeout, **self.objective_kwargs)
scores, start_times, end_times = tpot2.utils.eval_utils.parallel_eval_objective_list2(individuals_to_evaluate, self.objective_functions, verbose=self.verbose, max_eval_time_seconds=self.max_eval_time_seconds, budget=budget, n_expected_columns=len(self.objective_names), client=self._client, **self.objective_kwargs)

scores, start_times, end_times, eval_errors = tpot2.utils.eval_utils.parallel_eval_objective_list2(individuals_to_evaluate, self.objective_functions, verbose=self.verbose, max_eval_time_seconds=self.max_eval_time_seconds, budget=budget, n_expected_columns=len(self.objective_names), client=self._client, **self.objective_kwargs)

self.population.update_column(individuals_to_evaluate, column_names=self.objective_names, data=scores)
if budget is not None:
self.population.update_column(individuals_to_evaluate, column_names="Budget", data=budget)

self.population.update_column(individuals_to_evaluate, column_names="Submitted Timestamp", data=start_times)
self.population.update_column(individuals_to_evaluate, column_names="Completed Timestamp", data=end_times)
self.population.remove_invalid_from_population(column_names=self.objective_names)
self.population.remove_invalid_from_population(column_names=self.objective_names, invalid_value="TIMEOUT")
self.population.update_column(individuals_to_evaluate, column_names="Eval Error", data=eval_errors)
self.population.remove_invalid_from_population(column_names="Eval Error")
self.population.remove_invalid_from_population(column_names="Eval Error", invalid_value="TIMEOUT")

def get_unevaluated_individuals(self, column_names, budget=None, individual_list=None):
if individual_list is not None:
Expand Down Expand Up @@ -695,7 +696,7 @@ def evaluate_population_selection_early_stop(self,survival_counts, thresholds=No
if parallel_timeout < 0:
parallel_timeout = 10

scores, start_times, end_times = tpot2.utils.eval_utils.parallel_eval_objective_list2(individual_list=unevaluated_individuals_this_step,
scores, start_times, end_times, eval_errors = tpot2.utils.eval_utils.parallel_eval_objective_list2(individual_list=unevaluated_individuals_this_step,
objective_list=self.objective_functions,
verbose=self.verbose,
max_eval_time_seconds=self.max_eval_time_seconds,
Expand All @@ -706,14 +707,14 @@ def evaluate_population_selection_early_stop(self,survival_counts, thresholds=No
client=self._client,
**self.objective_kwargs,
)

self.population.update_column(unevaluated_individuals_this_step, column_names=this_step_names, data=scores)
self.population.update_column(unevaluated_individuals_this_step, column_names="Submitted Timestamp", data=start_times)
self.population.update_column(unevaluated_individuals_this_step, column_names="Completed Timestamp", data=end_times)
self.population.update_column(unevaluated_individuals_this_step, column_names="Eval Error", data=eval_errors)


self.population.remove_invalid_from_population(column_names=this_step_names)
self.population.remove_invalid_from_population(column_names=this_step_names, invalid_value="TIMEOUT")
self.population.remove_invalid_from_population(column_names="Eval Error")
self.population.remove_invalid_from_population(column_names="Eval Error", invalid_value="TIMEOUT")

#remove invalids:
invalids = []
Expand Down
107 changes: 77 additions & 30 deletions tpot2/evolvers/steady_state_evolver.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,15 @@
import dask
import warnings


def ind_mutate(ind, rng_):
rng = np.random.default_rng(rng_)
return ind.mutate(rng_=rng)

def ind_crossover(ind1, ind2, rng_):
rng = np.random.default_rng(rng_)
return ind1.crossover(ind2, rng_=rng)

class SteadyStateEvolver():
def __init__( self,
individual_generator ,
Expand Down Expand Up @@ -241,6 +250,8 @@ def optimize(self):

done = False
start_time = time.time()

enough_parents_evaluated=False
while not done:

###############################
Expand All @@ -257,20 +268,31 @@ def optimize(self):

#Loop through all futures, collect completed and timeout futures.
for completed_future in list(submitted_futures.keys()):

eval_error = None
#get scores and update
if completed_future.done(): #if future is done
#If the future is done but threw and error, record the error
if completed_future.exception() or completed_future.status == "error": #if the future is done and threw an error
print("Exception in future")
print(completed_future.exception())
scores = ["INVALID" for _ in range(len(self.objective_names))]
scores = [np.nan for _ in range(len(self.objective_names))]
eval_error = "INVALID"
elif completed_future.cancelled(): #if the future is done and was cancelled
print("Cancelled future (likely memory related)")
scores = ["INVALID" for _ in range(len(self.objective_names))]
scores = [np.nan for _ in range(len(self.objective_names))]
eval_error = "INVALID"
else: #if the future is done and did not throw an error, get the scores
try:
scores = completed_future.result()

#check if scores contain "INVALID" or "TIMEOUT"
if "INVALID" in scores:
eval_error = "INVALID"
scores = [np.nan]
elif "TIMEOUT" in scores:
eval_error = "TIMEOUT"
scores = [np.nan]

except Exception as e:
print("Exception in future, but not caught by dask")
print(e)
Expand All @@ -279,7 +301,8 @@ def optimize(self):
print("status", completed_future.status)
print("done", completed_future.done())
print("cancelld ", completed_future.cancelled())
scores = ["INVALID" for _ in range(len(self.objective_names))]
scores = [np.nan for _ in range(len(self.objective_names))]
eval_error = "INVALID"
else: #if future is not done

#check if the future has been running for too long, cancel the future
Expand All @@ -289,7 +312,8 @@ def optimize(self):
if self.verbose >= 4:
print(f'WARNING AN INDIVIDUAL TIMED OUT (Fallback): \n {submitted_futures[completed_future]} \n')

scores = ["TIMEOUT" for _ in range(len(self.objective_names))]
scores = [np.nan for _ in range(len(self.objective_names))]
eval_error = "TIMEOUT"
else:
continue #otherwise, continue to next future

Expand All @@ -304,6 +328,7 @@ def optimize(self):
scores = [scores[0] for _ in range(len(self.objective_names))]
self.population.update_column(this_individual, column_names=self.objective_names, data=scores)
self.population.update_column(this_individual, column_names="Completed Timestamp", data=time.time())
self.population.update_column(this_individual, column_names="Eval Error", data=eval_error)
if budget is not None:
self.population.update_column(this_individual, column_names="Budget", data=this_budget)

Expand All @@ -314,9 +339,8 @@ def optimize(self):

#now we have a list of completed futures


self.population.remove_invalid_from_population(column_names=self.objective_names, invalid_value="INVALID")
self.population.remove_invalid_from_population(column_names=self.objective_names, invalid_value="TIMEOUT")
self.population.remove_invalid_from_population(column_names="Eval Error", invalid_value="INVALID")
self.population.remove_invalid_from_population(column_names="Eval Error", invalid_value="TIMEOUT")


###############################
Expand Down Expand Up @@ -429,33 +453,56 @@ def optimize(self):
###############################
n_individuals_to_submit = self.max_queue_size - len(submitted_futures)
if n_individuals_to_submit > 0:
parents_df = self.population.get_column(self.population.population, column_names=self.objective_names+ ["Individual"], to_numpy=False)
parents_df = parents_df[~parents_df[self.objective_names].isin(["TIMEOUT","INVALID"]).any(axis=1)]
parents_df = parents_df[~parents_df[self.objective_names].isna().any(axis=1)]

cur_evaluated_population = parents_df["Individual"].to_numpy()
if len(cur_evaluated_population) > 0:
scores = parents_df[self.objective_names].to_numpy()
weighted_scores = scores * self.objective_function_weights
#number of crossover pairs and mutation only parent to generate

if len(parents_df) < 2:
var_ops = ["mutate" for _ in range(n_individuals_to_submit)]
else:
var_ops = [self.rng.choice(["crossover","mutate_then_crossover","crossover_then_mutate",'mutate'],p=[self.crossover_probability,self.mutate_then_crossover_probability, self.crossover_then_mutate_probability,self.mutate_probability]) for _ in range(n_individuals_to_submit)]

parents = []
for op in var_ops:
#count non-nan values in the objective columns
if not enough_parents_evaluated:
parents_df = self.population.get_column(self.population.population, column_names=self.objective_names, to_numpy=False)
scores = parents_df[self.objective_names[0]].to_numpy()
#count non-nan values in the objective columns
n_evaluated = np.count_nonzero(~np.isnan(scores))
if n_evaluated >0 :
enough_parents_evaluated=True

# parents_df = self.population.get_column(self.population.population, column_names=self.objective_names+ ["Individual"], to_numpy=False)
# parents_df = parents_df[~parents_df[self.objective_names].isin(["TIMEOUT","INVALID"]).any(axis=1)]
# parents_df = parents_df[~parents_df[self.objective_names].isna().any(axis=1)]

# cur_evaluated_population = parents_df["Individual"].to_numpy()
# if len(cur_evaluated_population) > 0:
# scores = parents_df[self.objective_names].to_numpy()
# weighted_scores = scores * self.objective_function_weights
# #number of crossover pairs and mutation only parent to generate

# if len(parents_df) < 2:
# var_ops = ["mutate" for _ in range(n_individuals_to_submit)]
# else:
# var_ops = [self.rng.choice(["crossover","mutate_then_crossover","crossover_then_mutate",'mutate'],p=[self.crossover_probability,self.mutate_then_crossover_probability, self.crossover_then_mutate_probability,self.mutate_probability]) for _ in range(n_individuals_to_submit)]

# parents = []
# for op in var_ops:
# if op == "mutate":
# parents.extend(np.array(cur_evaluated_population)[self.parent_selector(weighted_scores, k=1, n_parents=1, rng_=self.rng)])
# else:
# parents.extend(np.array(cur_evaluated_population)[self.parent_selector(weighted_scores, k=1, n_parents=2, rng_=self.rng)])

# #_offspring = self.population.create_offspring2(parents, var_ops, rng_=self.rng, add_to_population=True)
# offspring = self.population.create_offspring2(parents, var_ops, [ind_mutate], None, [ind_crossover], None, add_to_population=True, keep_repeats=False, mutate_until_unique=True, rng_=self.rng)

if enough_parents_evaluated:

parents = self.population.parent_select(selector=self.parent_selector, weights=self.objective_function_weights, columns_names=self.objective_names, k=n_individuals_to_submit, n_parents=2, rng_=self.rng)
p = np.array([self.crossover_probability, self.mutate_then_crossover_probability, self.crossover_then_mutate_probability, self.mutate_probability])
p = p / p.sum()
var_op_list = self.rng.choice(["crossover", "mutate_then_crossover", "crossover_then_mutate", "mutate"], size=n_individuals_to_submit, p=p)

for i, op in enumerate(var_op_list):
if op == "mutate":
parents.extend(np.array(cur_evaluated_population)[self.parent_selector(weighted_scores, k=1, n_parents=1, rng_=self.rng)])
else:
parents.extend(np.array(cur_evaluated_population)[self.parent_selector(weighted_scores, k=1, n_parents=2, rng_=self.rng)])
parents[i] = parents[i][0] #mutations take a single individual

_offspring = self.population.create_offspring(parents, var_ops, rng_=self.rng, n_jobs=1, add_to_population=True)
offspring = self.population.create_offspring2(parents, var_op_list, [ind_mutate], None, [ind_crossover], None, add_to_population=True, keep_repeats=False, mutate_until_unique=True, rng_=self.rng)

# If we don't have enough evaluated individuals to use as parents for variation, we create new individuals randomly
# This can happen if the individuals in the initial population are invalid
if len(cur_evaluated_population) == 0 and len(submitted_futures) < self.max_queue_size:
elif len(submitted_futures) < self.max_queue_size:

initial_population = self.population.evaluated_individuals.iloc[:self.initial_population_size*3]
invalid_initial_population = initial_population[initial_population[self.objective_names].isin(["TIMEOUT","INVALID"]).any(axis=1)]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1137,7 +1137,10 @@ def _cached_transform(cache_nunber=0):
pass

def __str__(self):
return self.export_pipeline().__str__()
try:
return f"<GraphIdnividual {0}".format(self.export_pipeline().__str__())
except:
return "<Invalid GraphIdnividual>"

def unique_id(self) -> GraphKey:
if self.key is None:
Expand Down
Loading
Loading