Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding SimpleImputer, IterativeImputer and KNNImputer to the config space. #142

Merged
merged 5 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 20 additions & 6 deletions tpot2/config/get_configspace.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@
from sklearn.feature_selection import f_classif, f_regression #TODO create a selectomixin using these?
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
from sklearn.gaussian_process import GaussianProcessRegressor, GaussianProcessClassifier
from sklearn.impute import SimpleImputer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import SimpleImputer, IterativeImputer, KNNImputer

all_methods = [SGDClassifier, RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier, MLPClassifier, DecisionTreeClassifier, XGBClassifier, KNeighborsClassifier, SVC, LogisticRegression, LGBMClassifier, LinearSVC, GaussianNB, BernoulliNB, MultinomialNB, ExtraTreesRegressor, RandomForestRegressor, GradientBoostingRegressor, BaggingRegressor, DecisionTreeRegressor, KNeighborsRegressor, XGBRegressor, ZeroCount, ColumnOneHotEncoder, Binarizer, FastICA, FeatureAgglomeration, MaxAbsScaler, MinMaxScaler, Normalizer, Nystroem, PCA, PolynomialFeatures, RBFSampler, RobustScaler, StandardScaler, SelectFwe, SelectPercentile, VarianceThreshold, SGDRegressor, Ridge, Lasso, ElasticNet, Lars, LassoLars, LassoLarsCV, RidgeCV, SVR, LinearSVR, AdaBoostRegressor, GradientBoostingRegressor, RandomForestRegressor, BaggingRegressor, ExtraTreesRegressor, DecisionTreeRegressor, KNeighborsRegressor, ElasticNetCV,
AdaBoostClassifier,MLPRegressor,
Expand All @@ -56,7 +57,7 @@
GaussianProcessClassifier, BaggingClassifier,LGBMRegressor,
Passthrough,SkipTransformer,
PassKBinsDiscretizer,
SimpleImputer,
SimpleImputer, IterativeImputer, KNNImputer
]


Expand Down Expand Up @@ -124,7 +125,7 @@
"all_transformers" : ["transformers", "scalers"],

"arithmatic": ["AddTransformer", "mul_neg_1_Transformer", "MulTransformer", "SafeReciprocalTransformer", "EQTransformer", "NETransformer", "GETransformer", "GTTransformer", "LETransformer", "LTTransformer", "MinTransformer", "MaxTransformer"],
"imputers": ["SimpleImputer"],
"imputers": ["SimpleImputer", "IterativeImputer", "KNNImputer"],
"skrebate": ["ReliefF", "SURF", "SURFstar", "MultiSURF"],
"genetic_encoders": ["DominantEncoder", "RecessiveEncoder", "HeterosisEncoder", "UnderDominanceEncoder", "OverDominanceEncoder"],

Expand All @@ -136,8 +137,6 @@

def get_configspace(name, n_classes=3, n_samples=1000, n_features=100, random_state=None):
match name:
case "SimpleImputer":
return imputers.simple_imputer_cs

#autoqtl_builtins.py
case "FeatureEncodingFrequencySelector":
Expand Down Expand Up @@ -352,6 +351,12 @@ def get_configspace(name, n_classes=3, n_samples=1000, n_features=100, random_st
)

#imputers.py
case "SimpleImputer":
return imputers.simple_imputer_cs
case "IterativeImputer":
return imputers.get_IterativeImputer_config_space(n_features=n_features, random_state=random_state)
case "KNNImputer":
return imputers.get_KNNImputer_config_space(n_samples=n_samples)

#mdr_configs.py
case "MDR":
Expand Down Expand Up @@ -443,8 +448,17 @@ def get_node(name, n_classes=3, n_samples=100, n_features=100, random_state=None
sfm_sp = get_configspace(name="SelectFromModel", n_classes=n_classes, n_samples=n_samples, random_state=random_state)
ext = get_node("ExtraTreesRegressor", n_classes=n_classes, n_samples=n_samples, random_state=random_state)
return WrapperPipeline(estimator_search_space=ext, method=SelectFromModel, space=sfm_sp)

# TODO Add IterativeImputer with more estimator methods
'''
if name == "IterativeImputer_learnedestimators":
iteative_sp = get_configspace(name="IterativeImputer", n_classes=n_classes, n_samples=n_samples, random_state=random_state)
regessor_searchspace = get_search_space(["LinearRegression", ..], n_classes=n_classes, n_samples=n_samples, random_state=random_state)
return WrapperPipeline(estimator_search_space=regressor_searchspace, method=ItartiveImputer, space=iteative_sp)
'''
#these are nodes that have special search spaces which require custom parsing of the hyperparameters
if name == "IterativeImputer":
configspace = get_configspace(name, n_classes=n_classes, n_samples=n_samples, random_state=random_state)
return EstimatorNode(STRING_TO_CLASS[name], configspace, hyperparameter_parser=imputers.IterativeImputer_hyperparameter_parser)
if name == "RobustScaler":
configspace = get_configspace(name, n_classes=n_classes, n_samples=n_samples, random_state=random_state)
return EstimatorNode(STRING_TO_CLASS[name], configspace, hyperparameter_parser=transformers.robust_scaler_hyperparameter_parser)
Expand Down
77 changes: 74 additions & 3 deletions tpot2/config/imputers.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,80 @@
import sklearn
import sklearn.ensemble
import sklearn.linear_model
import sklearn.neighbors
from ConfigSpace import ConfigurationSpace
from ConfigSpace import ConfigurationSpace, Integer, Float, Categorical, Normal
from ConfigSpace import EqualsCondition


simple_imputer_cs = ConfigurationSpace(
space = {
'strategy' : Categorical('strategy', ['mean','median', 'most_frequent', ]),
'add_indicator' : Categorical('add_indicator', [True, False]),
'strategy' : Categorical('strategy',
['mean','median', 'most_frequent', 'constant']
),
#'add_indicator' : Categorical('add_indicator', [True, False]),
#Removed add_indicator, it appends a mask next to the rest of the data
# and can cause errors. gk
}
)

def get_IterativeImputer_config_space(n_features, random_state):
space = { 'initial_strategy' : Categorical('initial_strategy',
['mean', 'median',
'most_frequent', 'constant']),
'n_nearest_features' : Integer('n_nearest_features',
bounds=(1, n_features)),
'imputation_order' : Categorical('imputation_order',
['ascending', 'descending',
'roman', 'arabic', 'random']),
}
)

estimator = Categorical('estimator', ['Bayesian', 'RFR', 'Ridge', 'KNN'])
sample_posterior = Categorical('sample_posterior', [True, False])
sampling_condition = EqualsCondition(sample_posterior, estimator, 'Bayesian')

if random_state is not None:
#This is required because configspace doesn't allow None as a value
space['random_state'] = random_state

cs = ConfigurationSpace(space=space)
cs.add_hyperparameters([estimator, sample_posterior])
cs.add_conditions([sampling_condition])
return cs

def get_KNNImputer_config_space(n_samples):
space = {
'n_neighbors': Integer('n_neighbors', bounds=(1, max(n_samples,100))),
'weights': Categorical('weights', ['uniform', 'distance'])
}

return ConfigurationSpace(
space=space
)

def IterativeImputer_hyperparameter_parser(params):
est = params['estimator']
match est:
case 'Bayesian':
estimator = sklearn.linear_model.BayesianRidge()
case 'RFR':
estimator = sklearn.ensemble.RandomForestRegressor()
case 'Ridge':
estimator = sklearn.linear_model.Ridge()
case 'KNN':
estimator = sklearn.neighbors.KNeighborsRegressor()

final_params = {
'estimator' : estimator,
'initial_strategy' : params['initial_strategy'],
'n_nearest_features' : params['n_nearest_features'],
'imputation_order' : params['imputation_order'],
}

if 'sample_posterior' in params:
final_params['sample_posterior'] = params['sample_posterior']

if 'random_state' in params:
final_params['random_state'] = params['random_state']

return final_params
Loading