-
Notifications
You must be signed in to change notification settings - Fork 186
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #129 from Dannoopsy/mmbench_ru
add task MMBench-ru
- Loading branch information
Showing
4 changed files
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
dataset_path: deepvk/MMBench-ru | ||
dataset_kwargs: | ||
token: True | ||
doc_to_target: "answer" | ||
model_specific_prompt_kwargs: | ||
default: | ||
pre_prompt: "" | ||
post_prompt: "\nВыбери правильный вариант ответа буквой." | ||
doc_to_visual: !function ru_utils.mmbench_doc_to_visual | ||
doc_to_text: !function ru_utils.mmbench_doc_to_text | ||
doc_to_target: "answer" | ||
process_results: !function ru_utils.mmbench_process_results | ||
model_specific_generation_kwargs: | ||
llava: | ||
image_aspect_ratio: original | ||
output_type: generate_until | ||
generation_kwargs: | ||
until: | ||
- "ASSISTANT:" | ||
max_new_tokens: 1024 | ||
temperature: 0 | ||
top_p: 1.0 | ||
num_beams: 1 | ||
do_sample: false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
task: "mmbench_ru_dev" | ||
test_split: dev | ||
include: _default_template_mmbench_ru_yaml | ||
metric_list: | ||
- metric: gpt_eval_score | ||
aggregation: !function ru_utils.mmbench_aggregate_dev_results_eval | ||
higher_is_better: true | ||
- metric: submission | ||
aggregation: !function ru_utils.mmbench_aggregate_dev_results_submission | ||
higher_is_better: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import yaml | ||
import os | ||
from pathlib import Path | ||
import pandas as pd | ||
import json | ||
|
||
from loguru import logger as eval_logger | ||
from lmms_eval.tasks.mmbench.mmbench_evals import MMBench_Evaluator | ||
from lmms_eval.tasks._task_utils.file_utils import generate_submission_file | ||
|
||
with open(Path(__file__).parent / "mmbench.yaml", "r") as f: | ||
raw_data = f.readlines() | ||
safe_data = [] | ||
for i, line in enumerate(raw_data): | ||
# remove function definition since yaml load cannot handle it | ||
if "!function" not in line: | ||
safe_data.append(line) | ||
|
||
config = yaml.safe_load("".join(safe_data)) | ||
|
||
GPT_EVAL_MODEL_NAME = config["metadata"]["gpt_eval_model_name"] | ||
API_TYPE = os.getenv("API_TYPE", "openai") | ||
|
||
if API_TYPE == "openai": | ||
API_URL = os.getenv("OPENAI_API_URL", "https://api.openai.com/v1/chat/completions") | ||
API_KEY = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY") | ||
elif API_TYPE == "azure": | ||
API_URL = os.getenv("AZURE_ENDPOINT", "https://api.cognitive.microsoft.com/sts/v1.0/issueToken") | ||
API_KEY = os.getenv("AZURE_API_KEY", "YOUR_API_KEY") | ||
else: | ||
API_URL = "YOUR_API_URL" | ||
API_KEY = "YOUR_API_KEY" | ||
|
||
|
||
mmbench_evaluator = MMBench_Evaluator(sys_prompt=config["metadata"]["sys_prompt"], API_KEY=API_KEY, API_URL=API_URL, model_version=GPT_EVAL_MODEL_NAME) | ||
|
||
|
||
def mmbench_doc_to_visual(doc): | ||
return [doc["image"].convert("RGB")] | ||
|
||
|
||
def mmbench_doc_to_text(doc, model_specific_prompt_kwargs=None): | ||
option_candidate = ["A", "B", "C", "D", "E"] | ||
options_prompt, options_dict = mmbench_evaluator.create_options_prompt(doc, option_candidate) | ||
|
||
data = { | ||
# "img": doc["image"], | ||
"question": doc["question"], | ||
"answer": doc.get("answer", None), | ||
"options": options_prompt, | ||
"category": doc["category"], | ||
"L2-category": doc["l2-category"], | ||
"options_dict": options_dict, | ||
"index": doc["index"], | ||
"hint": doc["hint"], | ||
"source": doc["source"], | ||
"split": doc["split"], | ||
} | ||
|
||
query_prompt = f"{data['hint']} {data['question']} {data['options']}" if pd.notna(data["hint"]) and data["hint"] != "nan" else f"{data['question']} {data['options']}" | ||
|
||
if model_specific_prompt_kwargs: | ||
query_prompt = f"{query_prompt}\n{model_specific_prompt_kwargs['post_prompt']}" | ||
|
||
return query_prompt | ||
|
||
|
||
def mmbench_process_results(doc, results): | ||
model_response = results[0].strip() | ||
data = { | ||
"gpt_eval_score": { | ||
"index": doc["index"], | ||
"question": doc["question"], | ||
"answer": doc["answer"], | ||
"prediction": model_response, | ||
"hint": doc["hint"], | ||
"source": doc["source"], | ||
"split": doc["split"], | ||
"category": doc["category"], | ||
"L2-category": doc["l2-category"], | ||
}, | ||
"submission": { | ||
"index": doc["index"], | ||
"question": doc["question"], | ||
"answer": doc["answer"], | ||
"prediction": model_response, | ||
"hint": doc["hint"], | ||
"source": doc["source"], | ||
"split": doc["split"], | ||
"category": doc["category"], | ||
"L2-category": doc["l2-category"], | ||
}, | ||
} | ||
option_candidate = ["A", "B", "C", "D", "E"] | ||
for c in option_candidate: | ||
data["submission"][c] = doc.get(c, "nan") | ||
data["gpt_eval_score"][c] = doc.get(c, "nan") | ||
return data | ||
|
||
|
||
def mmbench_aggregate_dev_results_eval(results, args): | ||
print(f"============= MMBench-RU(Dev) Detailed Results =============") | ||
overall_acc, category_acc, l2_category_acc = mmbench_evaluator.eval_result(results, eval_method="openai") | ||
file = generate_submission_file("mmbench_ru_dev_results.json", args) | ||
details_info = { | ||
"overall_acc": overall_acc, | ||
"category_acc": category_acc, | ||
"l2_category_acc": l2_category_acc, | ||
} | ||
with open(file, "w") as f: | ||
json.dump(details_info, f) | ||
return overall_acc * 100 | ||
|
||
|
||
def mmbench_aggregate_dev_results_submission(results, args): | ||
df = pd.DataFrame(results) | ||
excel_write_path = generate_submission_file("mmbench_ru_dev_results.xlsx", args) | ||
with pd.ExcelWriter(excel_write_path) as writer: | ||
df.to_excel(writer, index=False) | ||
eval_logger.info(f"Saved results to {excel_write_path}") | ||
|
||
|
||
def mmbench_aggregate_test_results(results, args): | ||
df = pd.DataFrame(results) | ||
excel_write_path = generate_submission_file("mmbench_ru_test_results.xlsx", args) | ||
with pd.ExcelWriter(excel_write_path) as writer: | ||
df.to_excel(writer, index=False) | ||
eval_logger.info(f"Saved results to {excel_write_path}") |