Skip to content

Commit

Permalink
abstract isProp-isEquiv
Browse files Browse the repository at this point in the history
  • Loading branch information
fernando committed Dec 3, 2023
1 parent f10edec commit d6c65d7
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 14 deletions.
7 changes: 4 additions & 3 deletions src/Chapter4/Book.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -477,9 +477,10 @@ isProp-isBiinv f =
isLinv-isContr = isQinv⇒isContr-isLinv f isQinv-f
isRinv-isContr = isQinv⇒isContr-isRinv f isQinv-f

isProp-isEquiv : {A : 𝒰 𝒾} {B : 𝒰 𝒿}
(f : A B) isProp (isEquiv f)
isProp-isEquiv = isProp-isBiinv
abstract
isProp-isEquiv : {A : 𝒰 𝒾} {B : 𝒰 𝒿}
(f : A B) isProp (isEquiv f)
isProp-isEquiv = isProp-isBiinv

-- Corollary 4.3.3.
isHae⇒isBiinv : {A : 𝒰 𝒾} {B : 𝒰 𝒿}
Expand Down
15 changes: 4 additions & 11 deletions src/Chapter7/Book.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -156,20 +156,13 @@ isEmbedding-pr₁-isNType𝒰-≃ n (X , p) (X' , p') (f , equiv-f) (g , equiv-g
ε k = ≡-Σ-comp₁ k (isProp-isEquiv g (tr isEquiv k equiv-f) equiv-g)
η : h ∘ (ap pr₁) ∼ id
η equiv = begin
(h ∘ ap pr₁) equiv ≡⟨ i ⟩
h (pair⁼⁻¹₁ (pair⁼ (pair⁼⁻¹ equiv))) ≡⟨ ap h ii ⟩
h (ap pr₁ equiv) ≡⟨ _ ⟩
pair⁼(ap pr₁ equiv , isProp-isEquiv g (tr isEquiv (ap pr₁ equiv) (equiv-f)) equiv-g) ≡⟨ iii ⟩
pair⁼(ap pr₁ equiv , pair⁼⁻¹₂ equiv) ≡⟨ iv ⟩
pair⁼(ap pr₁ equiv , isProp-isEquiv g _ equiv-g) ≡⟨ i ⟩
pair⁼(ap pr₁ equiv , pair⁼⁻¹₂ equiv) ≡⟨ ii ⟩
equiv ∎
where
i : h (ap pr₁ equiv) ≡ h (ap pr₁ (pair⁼ (pair⁼⁻¹ equiv)))
i = ap (h ∘ ap pr₁) (≡-Σ-uniq equiv)
ii : (pair⁼⁻¹₁ (pair⁼ (pair⁼⁻¹ equiv))) ≡ (ap pr₁ equiv)
ii = ≡-Σ-comp₁ (pair⁼⁻¹₁ equiv) (pair⁼⁻¹₂ equiv)
iii = ap (λ - pair⁼(ap pr₁ equiv , -))
i = ap (λ - pair⁼(ap pr₁ equiv , -))
(isProp⇒isSet (isProp-isEquiv g) _ _)
iv = ≃-η (≡-Σ-≃ _ _) equiv
ii = ≃-η (≡-Σ-≃ _ _) equiv

-- Theorem 7.1.11.
isNType-isNType : (n : ℕ)
Expand Down

0 comments on commit d6c65d7

Please sign in to comment.