-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
903 lines (682 loc) · 39.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
import warnings
import time
import torch
from torch.autograd import Variable
import numpy as np
from copy import deepcopy
import torch.nn as nn
from torch import distributions as dis
import scipy.io as sio
from torch.nn import functional as F
from base_modules import *
import colorednoise # Use Pink Noise
EPS = 1e-6 # Avoid NaN (prevents division by zero or log of zero)
# CAP the standard deviation of the actor
LOG_STD_MAX = 10
LOG_STD_MIN = -20
REG = 1e-3 # regularization of the actor
torch.set_default_dtype(torch.float32)
def softplus(x, min_val=1e-2):
return torch.log(1 + torch.exp(x)) + min_val
def compute_kld(mu_q, sig_q, mu_p, sig_p, v=1, w=1, keep_batch=False):
loss_batch = torch.mean(torch.sum(torch.log(sig_p) - torch.log(sig_q) + ((mu_p - mu_q).pow(2) + sig_q.pow(2))
/ (2.0 * sig_p.pow(2)) - 0.5, dim=-1) * v, dim=-1)
if keep_batch:
return loss_batch
else:
return torch.mean(loss_batch * w)
class BayesianBehaviorAgent(nn.Module):
def __init__(self,
input_size,
action_size,
output_size=None,
hidden_size=256,
beta_z=100,
beta_x=0.1,
z_size=2,
gamma=0.9,
verbose=0,
vrnn_config=None,
rl_config=None,
is_main_network=True,
device='cuda'):
super(BayesianBehaviorAgent, self).__init__()
if not torch.cuda.is_available():
self.device = 'cpu'
else:
self.device = device
self.hidden_size = hidden_size
self.z_size = z_size
self.gamma = gamma
self.beta_z = beta_z
self.beta_x = beta_x
self.verbose = verbose
self.input_size = input_size
self.action_size = action_size
self.output_size = input_size if output_size is None else output_size
self.record_internal_states = False
# ================================== VRNN configuration ================================
if vrnn_config is None:
vrnn_config = {}
self.decode_layers = vrnn_config["decode_layers"] if ("decode_layers" in vrnn_config) else [hidden_size, hidden_size]
self.x_phi_layers = vrnn_config["x_phi_layers"] if ("x_phi_layers" in vrnn_config) else [hidden_size, hidden_size]
self.h2z_layers = vrnn_config["h2z_layers"] if ("h2z_layers" in vrnn_config) else [hidden_size, hidden_size]
self.sig_min_x = vrnn_config["sig_min_x"] if ("sig_min_x" in vrnn_config) else 1e-3
self.sig_min_z = vrnn_config["sig_min_z"] if ("sig_min_z" in vrnn_config) else 1e-3
self.pred_next = vrnn_config["pred_next"] if ("pred_next" in vrnn_config) else True
# ================================= RL algorithm configuration =============================
if rl_config is None:
rl_config = {}
# ------ common ------
self.algorithm = rl_config["algorithm"] if "algorithm" in rl_config else "sac"
self.policy_layers = rl_config["policy_layers"] if ("policy_layers" in rl_config) else [hidden_size, hidden_size]
self.value_layers = rl_config["value_layers"] if ("value_layers" in rl_config) else [hidden_size, hidden_size]
self.motor_noise_beta = rl_config["motor_noise_beta"] if ("motor_noise_beta" in rl_config) else 1 # beta of colored motor noise. 0:Gaussian noise, 1:Pink noise
# =================================== CNN part ==================================
st_cnn_v, self.input_feature_size = make_cnn(self.input_size[0]) # for value function network
st_cnn_z, self.input_feature_size = make_cnn(2 * self.input_size[0]) # for z encoding network
dcnn = make_dcnn(self.decode_layers[-1], self.input_size[0])
dcnn_next = make_dcnn(self.decode_layers[-1], self.input_size[0])
# ==================================== VRNN part ==================================
feedforward_actfun_rnn = nn.Tanh
feedforward_actfun_fnn = nn.ReLU
self.main_rnn_module = nn.ModuleList()
self.policy_module = nn.ModuleList()
self.value_module = nn.ModuleList()
# ------------ feature extraction mlp --------------
self.f_x2phi_z = nn.Sequential(st_cnn_z, make_mlp(self.input_feature_size, self.x_phi_layers[:-1], self.x_phi_layers[-1], feedforward_actfun_fnn))
self.f_x2phi_v = nn.Sequential(st_cnn_v, make_mlp(self.input_feature_size, self.x_phi_layers[:-1], self.x_phi_layers[-1], feedforward_actfun_fnn))
self.main_rnn_module.append(self.f_x2phi_z)
self.value_module.append(self.f_x2phi_v)
# ------------ RNNs ------------------
# value network
self.rnn_v = nn.GRU(input_size=self.x_phi_layers[-1], hidden_size=hidden_size, batch_first=True)
self.value_module.append(self.rnn_v)
# Main RNN
self.rnn_h = nn.GRU(input_size=self.z_size, hidden_size=hidden_size, batch_first=True)
self.main_rnn_module.append(self.rnn_h)
# policy network
self.rnn_a = nn.GRU(input_size=self.hidden_size, hidden_size=hidden_size, batch_first=True)
self.policy_module.append(self.rnn_a)
# ------------ output decoder ----------------
decoder = make_mlp(self.hidden_size, self.decode_layers[:-1], self.decode_layers[-1], feedforward_actfun_fnn)
decoder_next = make_mlp(self.hidden_size, self.decode_layers[:-1], self.decode_layers[-1], feedforward_actfun_fnn)
self.f_h2muy = nn.Sequential(decoder, UnsqueezeModule(-1), UnsqueezeModule(-1), dcnn)
self.f_h2muy_next = nn.Sequential(decoder_next, UnsqueezeModule(-1), UnsqueezeModule(-1), dcnn_next)
self.main_rnn_module.append(self.f_h2muy)
self.main_rnn_module.append(self.f_h2muy_next)
# ------------- compute posterior z ------------
pre_zq_input_size = hidden_size + hidden_size # RNN state concat with observation embedding
self.f_h2muz_q = make_mlp(pre_zq_input_size, self.h2z_layers, z_size, feedforward_actfun_rnn, last_layer_linear=True)
self.main_rnn_module.append(self.f_h2muz_q)
self.f_h2aspsigz_q = nn.Sequential(make_mlp(pre_zq_input_size, self.h2z_layers, z_size, feedforward_actfun_rnn, last_layer_linear=True))
self.main_rnn_module.append(self.f_h2aspsigz_q)
# ===================================== RL part ===================================
if self.algorithm == 'sac':
self.target_entropy = rl_config["target_entropy"] if ("target_entropy" in rl_config) else np.float32(
- self.action_size)
self.alg_type = 'actor_critic'
self.lr_rl = rl_config["lr_rl"] if ("lr_rl" in rl_config) else 3e-4
self.beta_h = rl_config["beta_h"] if ("beta_h" in rl_config) else 'auto_1.0'
self.a_coef = rl_config["a_coef"] if ("a_coef" in rl_config) else 30
if isinstance(self.beta_h, str) and self.beta_h.startswith('auto'):
# Default initial value of beta_h when learned
init_value = 1.0
if '_' in self.beta_h:
init_value = float(self.beta_h.split('_')[1])
assert init_value > 0., "The initial value of beta_h must be greater than 0"
self.log_beta_h = torch.tensor(np.log(init_value).astype(np.float32), requires_grad=True)
else:
self.beta_h = float(self.beta_h)
if isinstance(self.beta_h, str):
self.optimizer_e = torch.optim.Adam([self.log_beta_h], lr=self.lr_rl) # optimizer for beta_h
# policy network
value_input_size = self.hidden_size
policy_input_size = self.hidden_size
self.f_s2pi0 = ContinuousActionPolicyNetwork(policy_input_size, self.action_size, hidden_layers=self.policy_layers)
self.policy_module.append(self.f_s2pi0)
# V network
self.f_s2v = ContinuousActionVNetwork(value_input_size, hidden_layers=self.value_layers)
# Q network 1
self.f_sa2q1 = ContinuousActionQNetwork(value_input_size, self.action_size, hidden_layers=self.value_layers)
# Q network 2
self.f_sa2q2 = ContinuousActionQNetwork(value_input_size, self.action_size, hidden_layers=self.value_layers)
self.value_module.append(self.f_s2v)
self.value_module.append(self.f_sa2q1)
self.value_module.append(self.f_sa2q2)
self.optimizer = torch.optim.Adam([*self.value_module.parameters(), *self.policy_module.parameters(),
*self.main_rnn_module.parameters()], lr=self.lr_rl)
else:
raise NotImplementedError
self.mse_loss = nn.MSELoss(reduction='none')
self.rl_update_times = 0
# ==================================== target network synchronization ================================
if is_main_network and self.algorithm == "sac":
target_net = deepcopy(self)
# synchronizing target network and main network
state_dict_tar = target_net.state_dict()
state_dict = self.state_dict()
for key in list(target_net.state_dict().keys()):
state_dict_tar[key] = state_dict[key]
target_net.load_state_dict(state_dict_tar)
self.target_net = target_net
# -------------------- init variables --------------------
self.h = torch.zeros([1, hidden_size], dtype=torch.float32, device=self.device) # main RNN state
self.h_a = torch.zeros([1, hidden_size], dtype=torch.float32, device=self.device) # policy RNN state
self.a_prev = torch.zeros([1, self.action_size], dtype=torch.float32) # last action
# Pink noise motor exploration
self.colored_noise_episode = np.zeros([10000, self.action_size], dtype=np.float32)
for i in range(self.colored_noise_episode.shape[-1]):
self.colored_noise_episode[:, i] = colorednoise.powerlaw_psd_gaussian(self.motor_noise_beta, 10000).astype(np.float32)
self.env_step = 0
# -------------------- variables to be recorded --------------------
self.n_levels = 1
self.init_recording_variables()
if self.record_internal_states:
self.init_recording_variables()
self.to(device=self.device)
@staticmethod
def sample_z(mu, sig):
# Using reparameterization trick to sample from a gaussian
if isinstance(sig, torch.Tensor):
eps = Variable(torch.randn_like(mu))
else:
eps = torch.randn_like(mu)
return mu + sig * eps
def pred_muy(self, h0_t):
# suppose the image prediction y satisfied 0 <= y <= 1, muy is the Bournulli variable such that y=sigmoid(muy)
if len(h0_t.size()) == 3: # batch x sequence x hidden_size
batch_size = h0_t.shape[0]
sequence_length = h0_t.shape[1]
h0_t = h0_t.reshape([batch_size * sequence_length, *h0_t.shape[2:]])
last = h0_t
muy = self.f_h2muy(last)
muy = muy.reshape([batch_size, sequence_length, *muy.shape[1:]])
else: # batch x hidden_size
last = h0_t
muy = self.f_h2muy(last)
return muy
def pred_muy_next(self, h0_t):
if len(h0_t.size()) == 3: # batch x sequence x hidden_size
batch_size = h0_t.shape[0]
sequence_length = h0_t.shape[1]
h0_t = h0_t.reshape([batch_size * sequence_length, *h0_t.shape[2:]])
last = h0_t
muy = self.f_h2muy_next(last)
muy = muy.reshape([batch_size, sequence_length, *muy.shape[1:]])
else: # batch x hidden_size
last = h0_t
muy = self.f_h2muy_next(last)
return muy
def init_states(self):
with torch.no_grad():
self.noise = np.random.normal(0, 1, size=[self.action_size])
self.h = torch.zeros_like(self.h)
self.h_a = torch.zeros_like(self.h_a)
self.z_p = torch.zeros([1, self.z_size], dtype=torch.float32, device=self.device)
self.z_q = torch.zeros([1, self.z_size], dtype=torch.float32, device=self.device)
self.h_levels, self.c_levels = [self.h], [self.h_a]
self.a_prev = torch.zeros([1, self.action_size], dtype=torch.float32)
self.colored_noise_episode = np.zeros([10000, self.action_size], dtype=np.float32)
for i in range(self.colored_noise_episode.shape[-1]):
self.colored_noise_episode[:, i] = colorednoise.powerlaw_psd_gaussian(self.motor_noise_beta, 10000).astype(np.float32)
self.env_step = 0
if self.record_internal_states:
self.init_recording_variables()
def compute_prior_z(self, h_tm1, colored_noise=False):
mu_p_t = torch.zeros([*h_tm1.shape[:-1], self.z_size], dtype=torch.float32, device=self.device)
sig_p_t = torch.ones([*h_tm1.shape[:-1], self.z_size], dtype=torch.float32, device=self.device)
z_p_t = self.sample_z(mu_p_t, sig_p_t)
return z_p_t, mu_p_t, sig_p_t
def compute_posterior_z(self, h_tm1, x_t_obs, x_tp1_obs):
x_tntp1_obs = torch.cat([x_t_obs, x_tp1_obs], dim=-3) # concat channels
if x_tp1_obs.shape.__len__() >= 5:
x_reshaped = x_tntp1_obs.reshape([-1, self.input_size[-3] * 2, self.input_size[-2], self.input_size[-1]])
x_phi_z = self.f_x2phi_z(x_reshaped).reshape([-1, self.hidden_size])
else:
x_phi_z = self.f_x2phi_z(x_tntp1_obs)
last = torch.cat([h_tm1, x_phi_z], dim=-1)
mu_q_t = self.f_h2muz_q(last)
sig_q_t = softplus(self.f_h2aspsigz_q(last))
z_q_t = self.sample_z(mu_q_t, sig_q_t)
if x_tp1_obs.shape.__len__() >= 5:
mu_q_t = mu_q_t.reshape([x_tp1_obs.shape[0], x_tp1_obs.shape[1], -1])
sig_q_t = sig_q_t.reshape([x_tp1_obs.shape[0], x_tp1_obs.shape[1], -1])
z_q_t = z_q_t.reshape([x_tp1_obs.shape[0], x_tp1_obs.shape[1], -1])
return z_q_t, mu_q_t, sig_q_t
def step_with_env(self, env, x_prev, action_return='normal', action_filter=None, prior_z_funtion=None):
with torch.no_grad():
# ------------------ Compute action ---------------------
muy_pred = self.pred_muy_next(self.h)
self.z_p, self.mu_z_p, self.sig_z_p = self.compute_prior_z(self.h)
if prior_z_funtion is not None:
self.z_p = prior_z_funtion(self.h)
# main RNN forward using prior z (habitual intension)
_, h_habitual = self.rnn_h(torch.unsqueeze(self.z_p, 1), torch.unsqueeze(self.h, 0))
# policy RNN forward
_, h_a = self.rnn_a(torch.unsqueeze(h_habitual[0], 1), torch.unsqueeze(self.h_a, 0))
self.h_a = h_a[0]
if self.algorithm == "sac":
mua, logsiga = self.f_s2pi0(self.h_a)
siga = torch.exp(logsiga)
else:
raise NotImplementedError
if action_return == 'normal':
self.noise = self.colored_noise_episode[self.env_step]
u = mua + torch.from_numpy(self.noise).to(device=self.device) * siga
elif action_return == 'mean':
u = mua
else:
raise NotImplementedError
self.env_step += 1
if self.algorithm == "sac":
a = torch.tanh(u)
else:
raise NotImplementedError
self.a_prev = a
# -------------- interact with env --------------
a = a.detach().cpu().numpy()
if action_filter:
a = action_filter(a)
results = env.step(a)
if len(results) == 4: # old Gym API
x_curr, r_prev, done, info = results
else: # New Gym API
x_curr, r_prev, terminated, truncated, info = results
done = terminated or truncated
# -------------- forward inference --------------
x_prev_tensor = torch.from_numpy(x_prev)
if len(x_prev.shape) in [1, 3]:
x_prev_tensor = x_prev_tensor.reshape([1, *x_prev.shape]).to(torch.float32).to(self.device)
x_curr_tensor = torch.from_numpy(x_curr)
if len(x_curr.shape) in [1, 3]:
x_curr_tensor = x_curr_tensor.reshape([1, *x_curr.shape]).to(torch.float32).to(self.device)
self.z_q, self.mu_z_q, self.sig_z_q = self.compute_posterior_z(self.h, x_prev_tensor, x_curr_tensor)
if prior_z_funtion is not None:
self.z_q = self.z_p
_, h_posterior = self.rnn_h(torch.unsqueeze(self.z_q, 1), torch.unsqueeze(self.h, 0))
self.h = h_posterior[0]
if self.record_internal_states:
self.model_h_series.append(self.h.detach().cpu().numpy())
self.model_h_a_series.append(self.h_a.detach().cpu().numpy())
self.model_z_p_series.append(self.z_p.detach().cpu().numpy())
self.model_z_q_series.append(self.z_q.detach().cpu().numpy())
self.model_mu_z_q_series.append(self.mu_z_q.detach().cpu().numpy())
self.model_sig_z_q_series.append(self.sig_z_q.detach().cpu().numpy())
self.model_sig_z_p_series.append(self.sig_z_p.detach().cpu().numpy())
self.model_mu_z_p_series.append(self.mu_z_p.detach().cpu().numpy())
pred_vision = muy_pred.reshape(self.input_size)
self.pred_visions.append(pred_vision.detach().cpu().numpy())
if len(self.obs_series) == 0:
self.obs_series.append(x_prev)
self.obs_series.append(x_curr)
self.a_series.append(a)
self.r_series.append(r_prev)
# self.u_series.append(u.detach().cpu().numpy())
self.mua_series.append(mua.detach().cpu().numpy())
self.siga_series.append(siga.detach().cpu().numpy())
return x_curr, r_prev, done, info
def init_recording_variables(self):
self.model_h_series = []
self.model_h_a_series = []
self.model_mu_z_q_series = []
self.model_sig_z_q_series = []
self.model_mu_z_p_series = []
self.model_sig_z_p_series = []
self.model_z_q_series = []
self.model_z_p_series = []
self.model_mu_s_q_series = []
self.model_sig_s_q_series = []
self.model_s_q_series = []
self.obs_series = []
self.r_series = []
self.a_series = []
self.mua_series = []
self.siga_series = []
self.pred_visions = []
# --------------- For Active Inference --------------
self.step_weighting_series = []
self.pred_trajectories = []
self.z_aif_batch_series = []
# self.h_aif_batch_series = []
def save_episode_data(self, filename=None, info=None):
data = {}
data['model_h_a'] = np.array(self.model_h_a_series).squeeze()
data['model_h'] = np.array(self.model_h_series).squeeze()
data['model_z_q'] = np.array(self.model_z_q_series).squeeze()
data['model_z_p'] = np.array(self.model_z_p_series).squeeze()
data['model_sig_z_q'] = np.array(self.model_sig_z_q_series).squeeze()
data['model_mu_z_q'] = np.array(self.model_mu_z_q_series).squeeze()
data['model_sig_z_p'] = np.array(self.model_sig_z_p_series).squeeze()
data['model_mu_z_p'] = np.array(self.model_mu_z_p_series).squeeze()
data['obs'] = np.array(self.obs_series).squeeze()
data['reward'] = np.array(self.r_series).squeeze()
data['action'] = np.array(self.a_series).squeeze()
data['mua'] = np.array(self.mua_series).squeeze()
data['siga'] = np.array(self.siga_series).squeeze()
data['step_weighting_series'] = np.array(self.step_weighting_series).squeeze()
data['pred_trajectories'] = np.array(self.pred_trajectories)
data['z_aif_batch'] = np.array(self.z_aif_batch_series)
# data['h_aif_batch'] = np.array(self.h_aif_batch_series)
try:
data['pred_visions'] = np.array(self.pred_visions)
data['goal_obs'] = np.array(self.goal_obs)
except:
pass
if info is not None:
data['info'] = info
if filename is None:
return data
else:
return sio.savemat(filename, data)
def learn(self, buffer, minibatch_size):
obs_batch, action_batch, reward_batch, done_batch, mask_batch, length_batch = buffer.sample_batch()
max_stps = int(torch.max(length_batch))
x_batch = obs_batch[:, :max_stps + 1]
yp_batch = obs_batch[:, :max_stps + 1]
a_batch = action_batch[:, :max_stps]
r_batch = reward_batch[:, :max_stps]
d_batch = done_batch[:, :max_stps].to(torch.float32)
mask_batch = mask_batch[:, :max_stps].to(torch.float32)
maskp_batch = torch.cat([torch.ones_like(mask_batch[:, 0:1]), mask_batch], dim=1)
w_batch = torch.ones_like(action_batch[:, 0, :1]) # weighting of each sample in the batch, here is uniform
# ----------------- obtain initial internal states --------------------------------------
# main network
h_beg = torch.zeros([minibatch_size, self.hidden_size], dtype=torch.float32, device=self.device)
# Policy network
ha_beg = torch.zeros([minibatch_size, self.hidden_size], dtype=torch.float32, device=self.device)
# Value network
hv_beg = torch.zeros([minibatch_size, self.hidden_size], dtype=torch.float32, device=self.device)
hv_tar_beg = hv_beg.detach()
# Burn-in (like in R2D2) for RNN not used
# ----------------------------- model training --------------------------
KL_loss = 0
KL_weight = 1. / self.action_size
# Predicive RNN
xp_tensor = torch.cat([x_batch[:, 1:], torch.zeros_like(x_batch[:, :1])], dim=1).detach()
x_tensor = x_batch
z_q_series = []
muz_q_series = []
sigz_q_series = []
h_q_series = []
h_t = h_beg.view([1, *h_beg.shape])
for stp in range(max_stps + 1):
z_q_t, muz_q_t, sigz_q_t = self.compute_posterior_z(h_t[0], x_tensor[:, stp], xp_tensor[:, stp])
_, h_t = self.rnn_h(torch.unsqueeze(z_q_t, 1), h_t)
z_q_series.append(z_q_t)
muz_q_series.append(muz_q_t)
sigz_q_series.append(sigz_q_t)
h_q_series.append(h_t[0])
z_q_tensor = torch.stack(z_q_series, dim=1)
muz_q_tensor = torch.stack(muz_q_series, dim=1)
sigz_q_tensor = torch.stack(sigz_q_series, dim=1)
h_q_tensor = torch.stack(h_q_series, dim=1)
h_q_tensor_tm1 = torch.cat([h_beg.reshape([h_beg.shape[0], 1, h_beg.shape[1]]), h_q_tensor[:, :-1]], dim=1)
z_p_tensor, muz_p_tensor, sigz_p_tensor = self.compute_prior_z(h_q_tensor_tm1)
muy_pred_tensor = self.pred_muy(h_q_tensor)
muyp_pred_tensor = self.pred_muy_next(h_q_tensor_tm1)
mask_kld = torch.cat([mask_batch, torch.zeros_like(mask_batch[:, 0:1])], dim=1)
kld_z = compute_kld(muz_q_tensor, sigz_q_tensor, muz_p_tensor, sigz_p_tensor, mask_kld, w_batch) # valid
kld = kld_z
KL_loss = KL_weight * self.beta_z * kld_z
obs_dims = [-1, -2, -3]
KL_x_t = torch.mean((
torch.sum(F.binary_cross_entropy_with_logits(muy_pred_tensor, yp_batch, reduction='none')
+ yp_batch * torch.log(yp_batch.clip(1e-9, 1)) + (1 - yp_batch) * torch.log((1 - yp_batch).clip(1e-9, 1)),
dim=obs_dims) * maskp_batch).mean(dim=-1) * w_batch)
if self.pred_next:
KL_x_tp1 = torch.mean((
torch.sum(F.binary_cross_entropy_with_logits(muyp_pred_tensor, yp_batch, reduction='none')
+ yp_batch * torch.log(yp_batch.clip(1e-9, 1)) + (1 - yp_batch) * torch.log((1 - yp_batch).clip(1e-9, 1)),
dim=obs_dims) * maskp_batch).mean(dim=-1) * w_batch)
else:
KL_x_tp1 = 0
KL_x = KL_x_t + KL_x_tp1
loss = KL_loss + KL_weight * (KL_x_tp1 + self.beta_x * KL_x_t)
# ------------------- RL loss --------------------------------
mask_batch = torch.unsqueeze(mask_batch, -1)
maskp_batch = torch.unsqueeze(maskp_batch, -1)
d_batch = torch.unsqueeze(d_batch, -1)
r_batch = torch.unsqueeze(r_batch, -1)
if self.algorithm == "sac":
if isinstance(self.beta_h, str):
beta_h = torch.exp(self.log_beta_h).detach()
else:
beta_h = self.beta_h
ha_tensor, _ = self.rnn_a(h_q_tensor[:, :-1], torch.unsqueeze(ha_beg, 0))
with torch.no_grad():
mua_tensor, logsia_tensor = self.f_s2pi0(ha_tensor)
siga_tensor = torch.exp(logsia_tensor.clamp(LOG_STD_MIN, LOG_STD_MAX))
sampled_u = self.sample_z(mua_tensor.detach(), siga_tensor.detach()).detach()
sampled_a = torch.tanh(sampled_u)
log_pi_exp = torch.sum(- (mua_tensor.detach() - sampled_u.detach()).pow(2)
/ (siga_tensor.detach().pow(2)) / 2
- torch.log(siga_tensor.detach() * torch.tensor(2.5066)),
dim=-1, keepdim=True)
log_pi_exp = log_pi_exp - torch.sum(torch.log(1.0 - sampled_a.pow(2) + EPS), dim=-1,
keepdim=True)
log_pi_exp = (log_pi_exp * mask_batch).detach().mean() / mask_batch.mean()
# ------ loss_v ---------------
input_v = self.f_x2phi_v(x_batch.reshape([minibatch_size * (max_stps + 1), *self.input_size])).reshape(
[minibatch_size, max_stps + 1, -1])
hv_tensor, _ = self.rnn_v(input_v, torch.unsqueeze(hv_beg, 0))
hv_tensor_tar, _ = self.target_net.rnn_v(input_v, torch.unsqueeze(hv_tar_beg, 0))
v_tensor = self.f_s2v(hv_tensor[:, :-1])
vp_tensor = self.target_net.f_s2v(hv_tensor_tar[:, 1:]).detach()
q_tensor_1 = self.f_sa2q1(hv_tensor[:, :-1], a_batch)
q_tensor_2 = self.f_sa2q2(hv_tensor[:, :-1], a_batch)
sampled_q = torch.min(self.f_sa2q1(hv_tensor[:, :-1], sampled_a).detach(),
self.f_sa2q2(hv_tensor[:, :-1], sampled_a).detach())
q_exp = sampled_q
v_tar = (q_exp - beta_h * log_pi_exp).detach()
loss_v = 0.5 * self.mse_loss(v_tensor * mask_batch, v_tar * mask_batch)
loss_v = torch.mean(w_batch * loss_v.mean([1, 2]))
loss_q = 0.5 * self.mse_loss(q_tensor_1 * mask_batch, (r_batch + (
1 - d_batch) * self.gamma * vp_tensor.detach()) * mask_batch) + \
0.5 * self.mse_loss(q_tensor_2 * mask_batch, (r_batch + (
1 - d_batch) * self.gamma * vp_tensor.detach()) * mask_batch)
loss_q = torch.mean(w_batch * loss_q.mean([1, 2]))
loss_critic = loss_q + loss_v
loss = loss + loss_critic
# ----- loss_a --------
# Reparameterize a
mua_tensor, logsia_tensor = self.f_s2pi0(ha_tensor)
siga_tensor = torch.exp(logsia_tensor.clamp(LOG_STD_MIN, LOG_STD_MAX))
mu_prob = dis.Normal(mua_tensor, siga_tensor)
sampled_u = mu_prob.rsample()
sampled_a = torch.tanh(sampled_u)
log_pi = torch.sum(mu_prob.log_prob(sampled_u).clamp(LOG_STD_MIN, LOG_STD_MAX), dim=-1,
keepdim=True) - torch.sum(
torch.log(1 - sampled_a.pow(2) + EPS), dim=-1, keepdim=True)
loss_a = torch.mean(w_batch * torch.mean(
beta_h * log_pi * mask_batch - torch.min(
self.f_sa2q1(hv_tensor.detach()[:, :-1], sampled_a),
self.f_sa2q2(hv_tensor.detach()[:, :-1], sampled_a)
) * mask_batch + torch.min(
self.f_sa2q1(hv_tensor.detach()[:, :-1], sampled_a.detach()),
self.f_sa2q2(hv_tensor.detach()[:, :-1], sampled_a.detach())
) * mask_batch, dim=[1, 2]))
loss_a = loss_a + REG / 2 * (
torch.mean(w_batch * torch.mean((siga_tensor * mask_batch.repeat_interleave(
siga_tensor.size()[-1], dim=-1)).pow(2), dim=[1, 2]))
+ torch.mean(w_batch * torch.mean((mua_tensor * mask_batch.repeat_interleave(
mua_tensor.size()[-1], dim=-1)).pow(2), dim=[1, 2])))
loss = loss + self.a_coef * loss_a
# --------------------------------------------------------------------------
# update entropy coefficient if required
if isinstance(beta_h, torch.Tensor):
self.optimizer_e.zero_grad()
loss_e = torch.mean(- self.log_beta_h * (log_pi_exp + self.target_entropy).detach())
loss_e.backward()
self.optimizer_e.step()
self.rl_update_times += 1
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if hasattr(self, "anneal"):
self.beta_h = self.beta_h * self.anneal
# update target network
state_dict_tar = self.target_net.f_s2v.state_dict()
state_dict = self.f_s2v.state_dict()
for key in list(state_dict_tar.keys()):
state_dict_tar[key] = (1 - 0.005) * state_dict_tar[key] + 0.005 * state_dict[key]
self.target_net.f_s2v.load_state_dict(state_dict_tar)
state_dict_tar = self.target_net.rnn_v.state_dict()
state_dict = self.rnn_v.state_dict()
for key in list(state_dict_tar.keys()):
state_dict_tar[key] = (1 - 0.005) * state_dict_tar[key] + 0.005 * state_dict[key]
self.target_net.rnn_v.load_state_dict(state_dict_tar)
else:
raise NotImplementedError
return KL_x.detach().cpu().item(), kld.detach().cpu().item()
def planning_er(self, curr_x, goal_y, beta_z=None, beta_x=None, goal_marker='',
batch_size=32, seq_len=16, grad_steps=101, lr_er=3e-1):
# --------------------- AIf -----------------
if isinstance(curr_x, np.ndarray):
curr_obs = torch.from_numpy(curr_x.astype(np.float32)).to(self.device)
if isinstance(goal_y, np.ndarray):
goal_obs = torch.from_numpy(goal_y.astype(np.float32)).to(self.device)
if goal_marker.find('red') >= 0:
goal_obs[0, :, :] = 0.4784
goal_obs[1, :, :] = 0.2235
goal_obs[2, :, :] = 0.0588
elif goal_marker.find('blue') >= 0:
goal_obs[0, :, :] = 0.0706
goal_obs[1, :, :] = 0.2824
goal_obs[2, :, :] = 0.6000
self.goal_obs = goal_obs.detach().cpu().numpy()
mu_aif_tensor = nn.Parameter(torch.normal(mean=0, std=1, size=[batch_size, seq_len, self.z_size], dtype=torch.float32, device=self.device).requires_grad_()) # shape: [batch_size x seq_len x z_size]
aspsig_aif_tensor = nn.Parameter(torch.normal(mean=0, std=1, size=[batch_size, seq_len, self.z_size], dtype=torch.float32, device=self.device).requires_grad_()) # shape: [batch_size x seq_len x z_size]
# Initialize c_seq (step weights for prediction errors)
c0_seq = nn.Parameter(torch.normal(mean=0, std=1, size=[batch_size, seq_len - 1], dtype=torch.float32, device=self.device).requires_grad_())
goal_seq = goal_obs.reshape([1, 1, *goal_obs.shape]).repeat_interleave(
batch_size, 0).repeat_interleave(seq_len - 1, 1).detach().to(self.device)
goal_seq = torch.cat([curr_obs.reshape([1, 1, *goal_obs.shape]).repeat_interleave(
batch_size, 0), goal_seq], dim=1)
self.optimizer_er = torch.optim.RMSprop([mu_aif_tensor, aspsig_aif_tensor, c0_seq], lr=lr_er, alpha=0.9)
loss_curve = np.zeros([grad_steps], dtype=np.float32)
h_beg = self.h.detach().repeat_interleave(batch_size, dim=0)
for grad_stp in range(grad_steps + 1):
sig_aif_tensor = softplus(aspsig_aif_tensor)
z_aif_tensor = mu_aif_tensor # using mean z
h_tensor, _ = self.rnn_h(z_aif_tensor, torch.unsqueeze(h_beg, 0))
h_tensor_tm1 = torch.cat([h_beg.reshape([h_beg.shape[0], 1, h_beg.shape[1]]), h_tensor[:, :-1]], dim=1)
_, mu_p_tensor, sig_p_tensor = self.compute_prior_z(h_tensor_tm1)
muy_pred_tensor = self.pred_muy(h_tensor)
muyp_pred_tensor = self.pred_muy_next(h_tensor_tm1)
c_seq = nn.functional.softmax(c0_seq, dim=1)
c_seq = torch.cat([torch.ones_like(c_seq[:, 0:1].detach()), c_seq], dim=1)
mask_kld = torch.ones([batch_size, seq_len], dtype=torch.float32, device=self.device)
kld = compute_kld(mu_aif_tensor, sig_aif_tensor, mu_p_tensor, sig_p_tensor, mask_kld, keep_batch=True)
if beta_z is None:
loss = self.beta_z * kld
else:
loss = beta_z * kld
obs_dims = [-1, -2, -3]
if goal_marker == 'end' or goal_marker == 'middle':
KL_x_t = (torch.sum((F.binary_cross_entropy_with_logits(muy_pred_tensor, goal_seq, reduction='none')
+ goal_seq * torch.log(goal_seq.clip(1e-9, 1)) + (1 - goal_seq) * torch.log((1 - goal_seq).clip(1e-9, 1))),
dim=obs_dims) * c_seq).mean(dim=-1)
KL_x_tp1 = (torch.sum((F.binary_cross_entropy_with_logits(muyp_pred_tensor, goal_seq, reduction='none')
+ goal_seq * torch.log(goal_seq.clip(1e-9, 1)) + (1 - goal_seq) * torch.log((1 - goal_seq).clip(1e-9, 1))),
dim=obs_dims) * c_seq).mean(dim=-1)
elif goal_marker.find('less') >= 0:
c_seq = torch.ones_like(c_seq)
KL_x_t = (torch.sum(torch.exp(- ((torch.sigmoid(muy_pred_tensor) - goal_seq) ** 2 / 0.5)), dim=obs_dims) * c_seq).mean(dim=-1)
KL_x_tp1 = (torch.sum(torch.exp(- ((torch.sigmoid(muy_pred_tensor) - goal_seq) ** 2 / 0.5)), dim=obs_dims) * c_seq).mean(dim=-1)
else:
c_seq = torch.ones_like(c_seq)
KL_x_t = - 0.1 * (torch.sum(torch.exp(- ((torch.sigmoid(muy_pred_tensor) - goal_seq) ** 2 / 0.005)), dim=obs_dims) * c_seq).mean(dim=-1)
KL_x_tp1 = - 0.1 * (torch.sum(torch.exp(- ((torch.sigmoid(muy_pred_tensor) - goal_seq) ** 2 / 0.005)), dim=obs_dims) * c_seq).mean(dim=-1)
if beta_x is None:
loss = loss + self.beta_x * KL_x_t
else:
loss = loss + beta_x * KL_x_t
if self.pred_next:
loss = loss + KL_x_tp1
# batch loss, size [batch_size]
if grad_stp < grad_steps:
self.optimizer_er.zero_grad()
loss_mean = torch.sum(loss)
loss_mean.backward()
self.optimizer_er.step()
loss_curve[grad_stp] = loss_mean.detach().cpu().numpy()
else:
loss_batch = loss.detach()
idx_sort = np.argsort(loss_batch.detach().cpu().numpy())
selected_idx_in_batch = idx_sort[0]
# AIf end
curr_mu_aif = mu_aif_tensor[selected_idx_in_batch, 0:1, :]
curr_sig_aif = sig_aif_tensor[selected_idx_in_batch, 0:1, :]
curr_z_aif = z_aif_tensor[selected_idx_in_batch, 0:1, :]
curr_h_aif = h_tensor[selected_idx_in_batch, 0:1, :]
self.z_aif_batch_series.append(z_aif_tensor[idx_sort].detach().cpu().numpy())
self.pred_trajectories.append(muyp_pred_tensor[selected_idx_in_batch].detach().cpu().numpy())
self.step_weighting_series.append(c_seq[selected_idx_in_batch].detach().cpu().numpy())
return curr_h_aif, curr_z_aif, curr_mu_aif, curr_sig_aif
def step_with_env_planning(self, env, x_prev, goal_y, seq_len=16, action_return='mean', goal_marker='', er_beta=None, action_filter=None):
# Note that here we use observation at previous step!
# ------------------ Compute action ---------------------
with torch.no_grad():
muy_pred = self.pred_muy_next(self.h[0])
# Here _p is obtained by active inference
h_p, self.z_p, self.mu_p, self.sig_p = self.planning_er(x_prev, goal_y, seq_len=seq_len, beta_z=er_beta, goal_marker=goal_marker) # Here z if from AIf, different from Habitual
with torch.no_grad():
_, h_a = self.rnn_a(torch.unsqueeze(h_p, 1), torch.unsqueeze(self.h_a, 0))
self.h_a = h_a[0]
if self.algorithm == "sac":
mua, logsiga = self.f_s2pi0(self.h_a)
siga = torch.exp(logsiga)
else:
raise NotImplementedError
if action_return == 'normal':
self.noise = self.colored_noise_episode[self.env_step]
u = mua + torch.from_numpy(self.noise).to(device=self.device) * siga
elif action_return == 'mean':
u = mua
else:
raise NotImplementedError
self.env_step += 1
if self.algorithm == "sac":
a = torch.tanh(u)
else:
raise NotImplementedError
self.a_prev = a
# -------------- interact with env --------------
a = a.detach().cpu().numpy()
if action_filter:
a = action_filter(a)
results = env.step(a)
if len(results) == 4:
x_curr, r_prev, done, info = results
else:
x_curr, r_prev, terminated, truncated, info = results
done = terminated or truncated
# ------- postdiction update ---------
x_prev_tensor = torch.from_numpy(x_prev)
if len(x_prev.shape) in [1, 3]:
x_prev_tensor = x_prev_tensor.reshape([1, *x_prev.shape]).to(torch.float32).to(self.device)
x_curr_tensor = torch.from_numpy(x_curr)
if len(x_curr.shape) in [1, 3]:
x_curr_tensor = x_curr_tensor.reshape([1, *x_curr.shape]).to(torch.float32).to(self.device)
self.z_q, self.mu_z_q, self.sig_z_q = self.compute_posterior_z(self.h, x_prev_tensor, x_curr_tensor)
self.h = h_p
if self.record_internal_states:
self.model_h_series.append(self.h.detach().cpu().numpy())
self.model_h_a_series.append(self.h_a.detach().cpu().numpy())
self.model_z_p_series.append(self.z_p.detach().cpu().numpy())
self.model_z_q_series.append(self.z_q.detach().cpu().numpy())
self.model_mu_z_q_series.append(self.mu_z_q.detach().cpu().numpy())
self.model_sig_z_q_series.append(self.sig_z_q.detach().cpu().numpy())
self.model_sig_z_p_series.append(self.sig_z_p.detach().cpu().numpy())
self.model_mu_z_p_series.append(self.mu_z_p.detach().cpu().numpy())
pred_vision = muy_pred.reshape(self.input_size)
self.pred_visions.append(pred_vision.detach().cpu().numpy())
if len(self.obs_series) == 0:
self.obs_series.append(x_prev)
self.obs_series.append(x_curr)
self.a_series.append(a)
self.r_series.append(r_prev)
self.mua_series.append(mua.detach().cpu().numpy())
self.siga_series.append(siga.detach().cpu().numpy())
return x_curr, r_prev, done, info