-
Notifications
You must be signed in to change notification settings - Fork 13
MOM6 coupled model configuration for replaying to MERRA 2 reanalysis
Jules Kouatchou edited this page Feb 23, 2023
·
4 revisions
All remain same as in the sample files, except the AGCM.rc
file, i.e., the atmospheric model set up is similar to the atmosphere in GMAO forward processing (FP) atmosphere-only model while it replays to MERRA-2 reanalysis.
# Atmospheric Model Configuration Parameters
# ------------------------------------------
NX: 10
NY: 36
IOSERVER_NODES: 2
NUM_BACKEND_PES: 9
AGCM_IM: 180
AGCM_JM: 1080
AGCM_LM: 72
AGCM_GRIDNAME: PE180x1080-CF
AGCM.GRID_TYPE: Cubed-Sphere
AGCM.GRIDNAME: PE180x1080-CF
AGCM.NF: 6
AGCM.LM: 72
AGCM.IM_WORLD: 180
DYCORE: FV3
SOLAR_DT: 3600
IRRAD_DT: 3600
SATSIM_DT: 1800
SOLARAvrg: 0
IRRADAvrg: 0
EOT: .TRUE.
ORBIT_ANAL2B: .TRUE.
# UNCOMMENT to use Morrison-Gettelman-Barahona cloud microphysics
CLDMICRO: 1MOMENT
# UNCOMMENT to use GFDL 6-phase cloud microphysics
# CLDMICRO: GFDL
# UNCOMMENT to when GFDL microphysics is run with NonHydrostatic FV3
# HYDROSTATIC: FALSE
# UNCOMMENT to disable aerosol activation in 1-moment cloud microphysics
#USE_AEROSOL_NN: 0
###########################################################
# Flag for definition of the convection scheme
# The options are RAS or GF
# ----------------------------------------
CONVPAR_OPTION: GF
# Override default aerosol convective scavenging and use dz method
USE_TRACER_SCAVEN: 1
# Flag to activated scale-awareness approach (0 false, 1 true)
USE_SCALE_DEP: 1
# Flag to activated diurnal cycle closure (0 false, 1 true)
DICYCLE: 1
# Convective plumes to be activated (1 true, 0 false)
# ----------------------------------------
DEEP: 1
SHALLOW: 0
CONGESTUS: 1
# UW shallow cumulus settings
DOSHLW: 1
# Choice for the closures:
# ----------------------------------------
# deep : 0 ensemble (all) , 1 GR, 4 ll omega, 7 moist conv, 10 PB
# shallow : 0 ensemble (Wstar/BLQE) , 1 Wstar, 4 heat-engine or 7 BLQE
# congestus: 0 ensemble (Wstar/BLQE/PB), 1 Wstar, 2 BLQE, 3 PB, 4 PB_BL
CLOSURE_DEEP:0
CLOSURE_SHALLOW:7
CLOSURE_CONGESTUS:3
# GWD Parameterization
# --------------------
# if .FALSE., use GEOS GWD code (default); .TRUE., use new NCAR GWD code
USE_NCAR_GWD: .FALSE.
# This is only used if USE_NCAR_GWD is .TRUE.
BERES_FILE_NAME: ExtData/g5gcm/gwd/newmfspectra40_dc25.nc
# Ocean Model Configuration Parameters
# ------------------------------------
OGCM.GRID_TYPE: Tripolar
OGCM.GRIDNAME: PE1440x1080-TM
OGCM.IM_WORLD: 1440
OGCM.JM_WORLD: 1080
OGCM.LM: 75
OGCM.NX: 36
OGCM.NY: 10
OGCM.GRIDSPEC: MAPL_Tripolar.nc
OGCM_RUN_DT: 450
##############################################################################################
#### ####
#### SST REMAPPING ####
#### Comparing Grid Resolutions of GRID_ocean and GRID_atmos: ####
#### ####
#### IF( GRID_ocean is equal resolution to GRID_atmos ) THEN ####
#### INTERPOLATE_SST = 0 ! Conservatively BIN GRID_ocean to GRID_atmos ####
#### ELSE IF ( GRID_ocean is higher resolution than GRID_atmos ) THEN ####
#### INTERPOLATE_SST = 0 ! Conservatively BIN GRID_ocean to GRID_atmos ####
#### ELSE ( GRID_ocean is lower resolution than GRID_atmos ) ####
#### INTERPOLATE_SST = 1 ! Linearly Interpolate GRID_ocean to GRID_atmos ####
#### ENDIF ####
#### ####
##############################################################################################
# INTERPOLATE_SST: 0 or 1 # (Default based on comparison of GRID_ocean and GRID_atmos)
# Print Resource Parameters (0: Non-Default values, 1: ALL values)
#-----------------------------------------------------------------
PRINTRC: 1
# Set the number of parallel I/O processes to use when
# RESTART_TYPE and or CHECKPOINT_TYPE are set to pbinary or pnc4
#---------------------------------------------------------------
PARALLEL_READFORCING: 0
NUM_READERS: 2
NUM_WRITERS: 1
# Write restarts by oserver (Default: NO)
WRITE_RESTART_BY_OSERVER: NO
# Active observer when desired
# ----------------------------
BKG_FREQUENCY: 0
# Resolution of state passed to atmos analysis
# --------------------------------------------
ANA_GRIDNAME: PC180x1080-DC
ANA_LM: 72
# Restart Record Parameters
# -------------------------
#RECORD_FINAL: >>>RECFINL<<<
#RECORD_FREQUENCY: 000000 000000
#RECORD_REF_DATE: >>>REFDATE<<< >>>FCSDATE<<<
#RECORD_REF_TIME: >>>REFTIME<<< >>>FCSTIME<<<
###################################################################################################
#### DAS/Replay Options ####
#### ------------------ ####
#### ####
#### The REPLAY mechanism operates within 2 distinct "flavors": ####
#### 1) Exact (Uses Archived Increment Files) ####
#### 2) Regular (Uses Archived Analysis/Assimilation Files) ####
#### ####
#### Exact Replays identically reproduce (bit-for-bit) a previous GEOS DAS experiment ####
#### by simply using the archived IAU forcing from the DAS experiment. ####
#### For these cases, only the CORRECTOR step is employed and is, therefore, as ####
#### efficient as a stand-alone model run. ####
#### ####
#### In order to guarantee reproducibility, the model and its BUILD parameters ####
#### (Compilers and Options) as well as all INPUT data must be identical to the ####
#### original DAS experiment. This type of REPLAY is useful when producing ####
#### additional passive, diagnostic data, or when the original data is lost. ####
#### ####
#### ####
#### Regular Replays are used to mimic the original IAU methodology, i.e., both the ####
#### PREDICTOR and the CORRECTOR steps are employed. The key difference being ####
#### that the Analysis is based on archived datasets. These Analyses may be from ####
#### the GEOS DAS system, or from any other source that is written using the ####
#### appropriate GEOS DAS ana.eta data format. ####
#### ####
#### Regular Replays will reproduce data (bit-for-bit) from the original source ####
#### Analysis experiment provided all model, input data, and Predictor/Corrector ####
#### configurations are identical to the original experiment. Otherwise, ####
#### differences in the model and/or IAU procedure will produce changes to the ####
#### assimilation and forecasts which may improve or degrade the results. ####
#### ####
#### ####
#### Note: The Operational GEOS DAS always operates in an "Exact" mode since the IAU ####
#### Increments are produced off-line, separate from the GCM and GSI executables, ####
#### based on ana.eta and bkg.eta files. Thus, the increments produces from these ####
#### files are REPLAYed in an "Exact" manner. ####
#### ####
#### ####
#### Exact Replay Details: ####
#### --------------------- ####
#### Exact Replays perform the CORRECTOR step by integrating the model forward in ####
#### time forced by the IAU Analysis increments. In MERRA-2, a single Analysis was ####
#### computed at the center of the Assimilation Cycle (6-hrs). Thus, as an example, ####
#### the cycle between 21z (or -03z) and +03z used the single Analysis at the synoptic ####
#### time of 00z. In contrast, the 4D-EnVar system produces 7 hourly Analyses (-03z, ####
#### -02z, -01z, 00z, +01z, +02z, +03z). The IAU sequence currently employed uses ####
#### the 3 Analyses defined at -03z, 00z, +03z for its IAU forcing. Both systems ####
#### may be described using the following parameters: ####
#### ####
#### CORRECTOR_DURATION nnnnnn (Duration -in seconds- of Corrector step) ####
#### REPLAY_MODE Exact ####
#### REPLAY_FILE %s.agcm_import_rst.%y4%m2%d2_%h2z.bin ####
#### REPLAY_FILE_FREQUENCY nnnnnn (Default: CORRECTOR_DURATION) ####
#### REPLAY_FILE_REFERENCE_TIME HHMMSS (Default: 000000) ####
#### ####
#### Thus, MERRA-2 => CORRECTOR_DURATION = 21600 ####
#### REPLAY_FILE_FREQUENCY = 21600 ####
#### REPLAY_FILE_REFERENCE_TIME = 000000 ####
#### ####
#### 4D_EnVar => CORRECTOR_DURATION = 21600 ####
#### REPLAY_FILE_FREQUENCY = 10800 ####
#### REPLAY_FILE_REFERENCE_TIME = 000000 ####
#### ####
#### Note: the Digital Filter (if used) is configured to provide its maximum impact ####
#### centered at the time(s) of the Analyses (00z for MERRA-2, and -03z, 00z, +03z ####
#### for 4D-EnVar). ####
#### ####
#### ####
#### Regular Replay Details: ####
#### ----------------------- ####
#### Regular Replay involves both the PREDICTOR and the CORRECTOR steps. If a single ####
#### Analysis is used within the CORRECTOR window (e.g., as in MERRA-2), the PREDICTOR ####
#### duration would be defined as the time from the beginning of the CORRECTOR step to ####
#### the time of the Analysis (e.g., 3-hours for the MERRA-2 system). However, if ####
#### multiple Analyses are used within the CORRECTOR window, the PREDICTOR duration ####
#### would be defined as the time from the beginning of the CORRECTOR step to the time ####
#### of the Last Analysis. Therefore, the length of the PREDICTOR step is computed ####
#### based on the FREQUENCY and REFERENCE TIME of the REPLAYed Analysis/Assimilation ####
#### files. Once the Increment file(s) are created, the model rewinds to the beginning ####
#### of the CORRECTOR step and performs an EXACT Replay to the just-produced files. ####
#### ####
#### ####
#### Replay09 File Details: ####
#### ---------------------- ####
#### The current 4D-EnVar system, as previously noted, produces 7 hourly Analyses: ####
#### (-03z, -02z, -01z, 00z, +01z, +02z, +03z) for each 6-hour assimilation window ####
#### centered around the 4 synoptic times of 00z, 06z, 12z, and 18z. We see that the ####
#### last Analysis (+03z) associated with each synoptic time will be over-ridden by ####
#### the first Analyiss (-03z) associated with synoptic time of the next assimilation ####
#### window. To prevent these over-ridden files from being lost, the GEOS-5 DAS ####
#### archives the (+03z) data with an appended "09" characterization (e.g., bkg09.eta, ####
#### ana09.eta, agcm09_import). Therefore, when running REPLAY, care must be given ####
#### to identify the Replay09 files if needed. A separate REPLAY_FILE09 key word is ####
#### used for this purpose, and is only utilized if the REPLAY configuration warrants. ####
#### ####
#### ####
#### Regular Replay Time Interpolation: ####
#### ---------------------------------- ####
#### In some instances the USER might wish to create IAU Increments at a frequency ####
#### greater than the frequency of the target analysis. For those cases additional ####
#### parameters are introduced and used in coordination with the standard REPLAY ####
#### parameters: ####
#### ####
#### Standard: REPLAY_FILE_FREQUENCY = nnnnn ####
#### REPLAY_FILE_REFERENCE_TIME = HHMMSS ####
#### Additional: MKIAU_FREQUENCY = nnnnn ####
#### MKIAU_REFERENCE_TIME = HHMMSS ####
#### REPLAY_TIME_INTERP = LINEAR (Default) or CUBIC ####
#### ####
#### When the additional parameters are invoked, the system time-interpolates the ####
#### REPLAY_FILE analyses to the times referenced by the MKIAU variables to create ####
#### the associated increment files. The time-interpolation is done via a LINEAR ####
#### or CUBIC scheme. ####
#### ####
###################################################################################################
# ASSIMILATION_CYCLE: nnnnnn # (Default: 21600)
# IAU_DIGITAL_FILTER: YES or NO # (Default: YES )
# Typical MERRA-2 Regular REPLAY Configuration
# --------------------------------------------
REPLAY_ANA_EXPID: MERRA2
REPLAY_ANA_LOCATION: /discover/nobackup/projects/gmao/merra2/data/ana/MERRA2_all
REPLAY_MODE: Regular
REPLAY_FILE: /discover/nobackup/projects/gmao/merra2/data/ana/MERRA2_all/Y%y4/M%m2/MERRA2.ana.eta.%y4%m2%d2_%h2z.nc4
# -----------------------------------------------------------------
# ANA EXPID and LOCATION used for REPLAY
# --------------------------------------
# REPLAY_ANA_EXPID: x0039
# REPLAY_ANA_LOCATION: /discover/nobackup/projects/gmao/g6dev/ltakacs/x0039
# Typical Exact REPLAY Configuration
# ----------------------------------
# REPLAY_MODE: Exact
# REPLAY_FILE: rs/Y%y4/M%m2/x0039.agcm_import_rst.%y4%m2%d2_%h2z.bin
# REPLAY_FILE09: rs/Y%y4/M%m2/x0039.agcm09_import_rst.%y4%m2%d2_%h2z.bin
# REPLAY_FILE_FREQUENCY: 10800
# REPLAY_FILE_REFERENCE_TIME: 000000
# Typical Regular REPLAY Configuration
# ------------------------------------
# REPLAY_MODE: Regular
# REPLAY_FILE: ana/Y%y4/M%m2/x0039.ana.eta.%y4%m2%d2_%h2z.nc4
# REPLAY_FILE09: ana/Y%y4/M%m2/x0039.ana09.eta.%y4%m2%d2_%h2z.nc4
# REPLAY_FILE_FREQUENCY: 10800
# REPLAY_FILE_REFERENCE_TIME: 000000
# 4DIAU (recreate analysis tendency on the fly)
# ---------------------------------------------
# Exact REPLAY Mode for 4D-IAU
# ----------------------------
####################################################################################################
#### Miscellaneous Exact/Regular REPLAY Parameters ####
#### --------------------------------------------- ####
#### ####
#### REPLAY FILE MUST be on an A-Grid! ####
#### ####
#### REPLAY Variable Defaults: p,u,v,t,qv,o3 ####
#### REPLAY Variables are set to either: YES, NO, or a character_string NAME. ####
#### The NAME is used as a means of creating an ALIAS for the REPLAY variable. ####
#### An ALIAS is required when the REPLAY FILE contains a variable name NOT included ####
#### in our standard list. (e.g., REPLAY_T: temperature) ####
#### ####
#### NOTE: When using an ALIAS for REPLAY_T, you must also supply the REPLAY_T_TYPE ####
#### ----- REPLAY_T_TYPE: T # Options: T,TV,TH,THV ####
#### ####
#### REPLAY Variables may be disabled by setting resource parameter to: NO ####
#### (E.g., REPLAY_QV: NO to disable REPLAY of Moisture). ####
#### ####
#### ####
####################################################################################################
#
# BKG2ANACNSRV: 0 or 1 # (Defaults to 0:BiLinear Interpolation. Note: Conservative Transformation creates Non-Wavenumber 1 Winds at Poles)
# ANA2BKGCNSRV: 0 or 1 # (Defaults to 0:BiLinear Interpolation. Note: Conservative Transformation creates Non-Wavenumber 1 Winds at Poles)
#
# Regular REPLAY Variables (Change only if desired REPLAY is different from Default)
# ----------------------------------------------------------------------------------
REPLAY_P: YES # (Default: YES)
REPLAY_U: YES # (Default: YES)
REPLAY_V: YES # (Default: YES)
REPLAY_T: YES # (Default: YES)
REPLAY_QV: YES # (Default: YES)
REPLAY_O3: YES # (Default: YES)
REPLAY_TS: NO # (Default: NO)
#
# Regular REPLAY Remapping and Blending Variables
# -----------------------------------------------
# REPLAY_REMAP: YES # Default = YES, Remap ANA Data to BKG Topography
# REPLAY_DAMPBEG: 100.0 # Default = 1, Linearly Damp Increments between DAMPBEG & DAMPEND (Pascals)
# REPLAY_DAMPEND: 5000.0 # Default = 1, Linearly Damp Increments between DAMPBEG & DAMPEND (Pascals)
# REPLAY_SHUTOFF: 21600 # ShutOff Replay after 6-hours of Integration
# REPLAY_WINDFIX: YES # Apply windfix to force vertically-integrated analysis divergence increment to zero
#
# REPLAY_BLEND_QV_AT_TP: .FALSE. # Default = FALSE, Blend QV to BKG upwards from tropopause
#
#
##############################################################################################
#### Intermittent Replay Options ####
#### ####
#### Intermittent: Within this mode two possibilities are available: ####
#### 1) Replay to full field: ####
#### Replays to an existing Analysis by "Dump & Splash". ####
#### RePlay File: %s.bkg.eta.%y4%m2%d2_%h2z.NCSUFFIX ####
#### Note: BKG.ETA (hour-3) files are used since they ####
#### contain the previous full analysis increment and are ####
#### well balanced. Do not use DAMP parameters. ####
#### RePlay Name Default: uwnd,vwnd,theta,sphu,ps,delp,ozone ####
#### REPLAY_GRID Options: D-GRID (Default), A-GRID ####
#### REPLAY_TVAR Options: THETAV (Default), THETA, TV, T ####
#### 2) Replay to an increment: (only cubed-dynamics for now) ####
#### Replay to an existing Analysis Increment as e.g, ####
#### RePlay File: %s.inc.eta.%y4%m2%d2_%h2z.NCSUFFIX ####
#### You much as specify REPLAY_IM and REPLAY_JM as ####
#### well as set REPLAY_TYPE: Incremental; this is ####
#### in addition to the MODE Intermittent. In some cases ####
#### you might set the parameter REPLAY_REF_TGAP to be ####
#### equal to RUN_DT (but in HHMMSS) to avoid increment ####
#### being taken one DT out of sync (this can also be used ####
#### in (1) above). ####
#### ####
#### Note: RePlay Blending Options Currently Pertain ####
#### to Intermittent Mode (see FVdycore_GridCompMod.F90) ####
#### ####
##############################################################################################
##REPLAY_TYPE: Incremental
##REPLAY_FILE: C590a.inc.eta.%y4%m2%d2_%h2z.nc4
##REPLAY_IM: 576
##REPLAY_JM: 361
##REPLAY_REF_DATE: >>>ANADATE<<<
##REPLAY_REF_TIME: >>>ANATIME<<<
##REPLAY_REF_TGAP: 001500
#REPLAY_MODE: Intermittent
#REPLAY_FILE: /discover/nobackup/projects/gmao/iesa/aerosol/Data/MERRA/iReplay/576x361/Y%y4/M%m2/d5_merra_jan98.bkg.eta.%y4%m2%d2_%h2z.nc4
#REPLAY_IM: 576 # Required for Intermittent Replay on Cube
#REPLAY_JM: 361 # Required for Intermittent Replay on Cube
#REPLAY_GRID: A-GRID # (!! For Intermittent Replay Only !!) Standard Options: D-GRID (Default), A-GRID
#REPLAY_TSNAME: NULL
#REPLAY_UNAME: u
#REPLAY_VNAME: v
#REPLAY_TNAME: tv
#REPLAY_TVAR: TV # Standard Options: THETAV (Default), THETA, TV, T
#REPLAY_REMAP: NO # Standard Options: NO - Intermittent Replay (Cube Only)
#REPLAY_BLEND: 0 # Standard Option: 0 - no blending
#REPLAY_BLEND_P_ABOVE: 10.0 # Standard Option: 10 Pa - highest of the two blending pressure levels
#REPLAY_BLEND_P_BELOW: 100.0 # Standard Option: 100 Pa - lowest of the two blending pressure levels
#REPLAY_BLEND_QV_AT_TP: .FALSE. # Default = .FALSE. Blend QV to BKG upwards from tropopause
##############################################################################################
#### REPLAY PRECIPITATION ####
##############################################################################################
#
# REPLAY PRECIP Parameters
# ------------------------
# To REPLAY to CMAP-based precip files, you must symbolically link into your work area the datastreams from MERRA_LAND:
#
# Option 1) CMAP-CPCU Corrected (Used for NCA Project)
# ----------------------------------------------------
# /bin/ln -s /gpfsm/dnb51/projects/p15/iau/merra_land/precip_CPCU-CMAP_corrected_MERRA/GEOSdas-2_1_4 ExtData/PCP
#
# Then, you must replace the token after PRECIP_FILE with the proper datastream for the desired years:
# ----------------------------------------------------------------------------------------------------
# Years 1978-1993: d5_merra_jan79/diag/Y%y4/d5_merra_jan79.tavg1_2d_lfo_Nx_corr.%y4%m2%d2_%h230z.nc (Currently Not ONLINE)
# Years 1988-2001: d5_merra_jan89/diag/Y%y4/d5_merra_jan89.tavg1_2d_lfo_Nx_corr.%y4%m2%d2_%h230z.nc (Currently Not ONLINE)
# Years 1999-2014: d5_merra_jan98/diag/Y%y4/d5_merra_jan98.tavg1_2d_lfo_Nx_corr.%y4%m2%d2_%h230z.nc
# ---------------
#
# Option 2) CMAP-GPCP Corrected (from MERRA-Land)
# -----------------------------------------------
# /bin/ln -s /discover/nobackup/projects/gmao/share/gmao_ops/fvInput/merra_land/precip_CPCUexcludeAfrica-CMAP_corrected_MERRA/GEOSdas-2_1_4 ExtData/PCP
#
# Then, you must replace the token after PRECIP_FILE with the proper datastream:
# -----------------------------------------------------------------------------------------------------------
# Years 1979-2014: d5_merra/Y%y4/M%m2/d5_merra.tavg1_2d_lfo_Nx_corr.%y4%m2%d2_%h230z.nc
# ---------------
#
# Possible REPLAY PRECIP Files:
# -----------------------------
#PRECIP_FILE: ExtData/PCP/@PRECIP_FILE
#
# Latitudinal Tapering between 42.5 and 62.5 degrees mimics NCEP's approach of using GCM-based precip at high latitudes
# --------------------
#USE_PP_TAPER: 1
##############################################################################################
#### Land Surface Model ####
##############################################################################################
# Option to Diagnose Precipitation Types for Land Surface
# ------------------------------------------------------------
DIAGNOSE_PRECIP_TYPE: FALSE
# Choice for Land Surface Model
# 1 : Catchment
# 2 : CatchmentCNCLM40
# 3 : CatchmentCNCLM45
# ------------------------------------------------------------
LSM_CHOICE: 1
# Apply increments from LDAS?
# 0 : no (default)
# 1 : yes
# ------------------------------------------------------------
#LDAS_INCR: 0
# Name of file containing Surface GridComp resource parameters
# ------------------------------------------------------------
# SURFRC: GEOS_SurfaceGridComp.rc
# ****************************************************************
# ******* REQUIRES MAJOR CLEAN-UP ACROSS SEVERAL GRIDCOMPs *******
# ******* (retained to facilitate this cleanup in future) *******
# ******* IMPORTANT: This is merely for future reference *******
# ******* The model reads USE_CNNEE from CO2_GridComp.rc *******
# ******* not from this file. *******
# Atmosphere-Land CO2 coupling
# ----------------------------
# USE_CNNEE: 0 # options : 0 (default); 1 (Chem uses NNEE from CatchmentCN, NOTE you must add USE_CNNEE: 1 to CO2_GridComp.rc and AMIP/CO2_GridComp.rc,
# in GOCART/ESMF/GOCART_GridComp/CO2_GridComp/ before you build the model.)
#
# ****************************************************************
##############################################################################################
##############################################################################################
# IAU and In-Line BIAS Correction Parameters
# ----------------------------------------------------------------------------------
# AGCM_IMPORT = IAU Analysis Increment
# AGCM_INTERNAL = BIAS Correction Increment: BIAS(n+1) = ALPHA*IAU(n) + BETA*BIAS(n)
# ----------------------------------------------------------------------------------
#AGCM_IMPORT_RESTART_FILE: agcm_import_rst
#AGCM_INTERNAL_RESTART_FILE: agcm_internal_rst
#AGCM_INTERNAL_CHECKPOINT_FILE: agcm_internal_checkpoint
#AGCM_INTERNAL_CHECKPOINT_TYPE: default
#AGCM_ALPHA: 0.000
#AGCM_BETA: 1.000
MAPL_ENABLE_BOOTSTRAP: YES
# Required AGCM Model Restart Files
# ---------------------------------
DYN_INTERNAL_RESTART_FILE: fvcore_internal_rst
DYN_INTERNAL_CHECKPOINT_FILE: fvcore_internal_checkpoint
DYN_INTERNAL_CHECKPOINT_TYPE: default
DYN_INTERNAL_HEADER: 1
LAKE_INTERNAL_RESTART_FILE: lake_internal_rst
LAKE_INTERNAL_CHECKPOINT_FILE: lake_internal_checkpoint
LAKE_INTERNAL_CHECKPOINT_TYPE: default
LANDICE_INTERNAL_RESTART_FILE: landice_internal_rst
LANDICE_INTERNAL_CHECKPOINT_FILE: landice_internal_checkpoint
LANDICE_INTERNAL_CHECKPOINT_TYPE: default
CATCH_INTERNAL_RESTART_FILE: catch_internal_rst
CATCH_INTERNAL_CHECKPOINT_FILE: catch_internal_checkpoint
CATCH_INTERNAL_CHECKPOINT_TYPE: default
CATCHCNCLM40_INTERNAL_RESTART_FILE: catchcn_internal_rst
CATCHCNCLM40_INTERNAL_CHECKPOINT_FILE: catchcn_internal_checkpoint
CATCHCNCLM40_INTERNAL_CHECKPOINT_TYPE: default
CATCHCNCLM45_INTERNAL_RESTART_FILE: catchcn_internal_rst
CATCHCNCLM45_INTERNAL_CHECKPOINT_FILE: catchcn_internal_checkpoint
CATCHCNCLM45_INTERNAL_CHECKPOINT_TYPE: default
MOIST_INTERNAL_RESTART_FILE: moist_internal_rst
MOIST_INTERNAL_CHECKPOINT_FILE: moist_internal_checkpoint
MOIST_INTERNAL_CHECKPOINT_TYPE: default
# Boot-Strapable AGCM Model Restart Files
# ---------------------------------------
AIAU_IMPORT_RESTART_FILE: aiau_import_rst
AIAU_IMPORT_CHECKPOINT_FILE: aiau_import_checkpoint
AIAU_IMPORT_CHECKPOINT_TYPE: default
GWD_IMPORT_RESTART_FILE: gwd_import_rst
GWD_IMPORT_CHECKPOINT_FILE: gwd_import_checkpoint
GWD_IMPORT_CHECKPOINT_TYPE: default
MOIST_IMPORT_RESTART_FILE: moist_import_rst
MOIST_IMPORT_CHECKPOINT_FILE: moist_import_checkpoint
MOIST_IMPORT_CHECKPOINT_TYPE: default
SURFACE_IMPORT_RESTART_FILE: surf_import_rst
SURFACE_IMPORT_CHECKPOINT_FILE: surf_import_checkpoint
SURFACE_IMPORT_CHECKPOINT_TYPE: default
SOLAR_INTERNAL_RESTART_FILE: solar_internal_rst
SOLAR_INTERNAL_CHECKPOINT_FILE: solar_internal_checkpoint
SOLAR_INTERNAL_CHECKPOINT_TYPE: default
IRRAD_INTERNAL_RESTART_FILE: irrad_internal_rst
IRRAD_INTERNAL_CHECKPOINT_FILE: irrad_internal_checkpoint
IRRAD_INTERNAL_CHECKPOINT_TYPE: default
TURBULENCE_INTERNAL_RESTART_FILE: turb_internal_rst
TURBULENCE_INTERNAL_CHECKPOINT_FILE: turb_internal_checkpoint
TURBULENCE_INTERNAL_CHECKPOINT_TYPE: default
TURBULENCE_IMPORT_RESTART_FILE: turb_import_rst
TURBULENCE_IMPORT_CHECKPOINT_FILE: turb_import_checkpoint
TURBULENCE_IMPORT_CHECKPOINT_TYPE: default
PCHEM_INTERNAL_RESTART_FILE: pchem_internal_rst
PCHEM_INTERNAL_CHECKPOINT_FILE: pchem_internal_checkpoint
PCHEM_INTERNAL_CHECKPOINT_TYPE: default
#H2O_INTERNAL_RESTART_FILE: h2o_internal_rst
#H2O_INTERNAL_CHECKPOINT_FILE: h2o_internal_checkpoint
#H2O_INTERNAL_CHECKPOINT_TYPE: default
# Chemistry/AEROSOL Model Restart Files
# -------------------------------------
GOCART_IMPORT_RESTART_FILE: gocart_import_rst
GOCART_IMPORT_CHECKPOINT_FILE: gocart_import_checkpoint
GOCART_IMPORT_CHECKPOINT_TYPE: default
GOCART_INTERNAL_RESTART_FILE: gocart_internal_rst
GOCART_INTERNAL_CHECKPOINT_FILE: gocart_internal_checkpoint
GOCART_INTERNAL_CHECKPOINT_TYPE: default
GOCART.data_INTERNAL_RESTART_FILE: gocartdata_internal_rst
GOCART.data_INTERNAL_CHECKPOINT_FILE: gocartdata_internal_checkpoint
GOCART.data_INTERNAL_CHECKPOINT_TYPE: default
DU_INTERNAL_RESTART_FILE: du_internal_rst
DU_INTERNAL_CHECKPOINT_FILE: du_internal_checkpoint
DU_INTERNAL_CHECKPOINT_TYPE: default
SS_INTERNAL_RESTART_FILE: ss_internal_rst
SS_INTERNAL_CHECKPOINT_FILE: ss_internal_checkpoint
SS_INTERNAL_CHECKPOINT_TYPE: default
CA.oc_INTERNAL_RESTART_FILE: caoc_internal_rst
CA.oc_INTERNAL_CHECKPOINT_FILE: caoc_internal_checkpoint
CA.oc_INTERNAL_CHECKPOINT_TYPE: default
CA.bc_INTERNAL_RESTART_FILE: cabc_internal_rst
CA.bc_INTERNAL_CHECKPOINT_FILE: cabc_internal_checkpoint
CA.bc_INTERNAL_CHECKPOINT_TYPE: default
CA.br_INTERNAL_RESTART_FILE: cabr_internal_rst
CA.br_INTERNAL_CHECKPOINT_FILE: cabr_internal_checkpoint
CA.br_INTERNAL_CHECKPOINT_TYPE: default
NI_INTERNAL_RESTART_FILE: ni_internal_rst
NI_INTERNAL_CHECKPOINT_FILE: ni_internal_checkpoint
NI_INTERNAL_CHECKPOINT_TYPE: default
SU_INTERNAL_RESTART_FILE: su_internal_rst
SU_INTERNAL_CHECKPOINT_FILE: su_internal_checkpoint
SU_INTERNAL_CHECKPOINT_TYPE: default
#CARMA_INTERNAL_RESTART_FILE: carma_internal_rst
#CARMA_INTERNAL_CHECKPOINT_FILE: carma_internal_checkpoint
#CARMA_INTERNAL_CHECKPOINT_TYPE: default
##STRATCHEM_INTERNAL_RESTART_FILE: stratchem_internal_rst
##STRATCHEM_INTERNAL_CHECKPOINT_FILE: stratchem_internal_checkpoint
##STRATCHEM_INTERNAL_CHECKPOINT_TYPE: default
##STRATCHEM_IMPORT_RESTART_FILE: stratchem_import_rst
##STRATCHEM_IMPORT_CHECKPOINT_FILE: stratchem_import_checkpoint
##STRATCHEM_IMPORT_CHECKPOINT_TYPE: default
##GMICHEM_INTERNAL_RESTART_FILE: gmichem_internal_rst
##GMICHEM_INTERNAL_CHECKPOINT_FILE: gmichem_internal_checkpoint
##GMICHEM_INTERNAL_CHECKPOINT_TYPE: default
##GMICHEM_IMPORT_RESTART_FILE: gmichem_import_rst
##GMICHEM_IMPORT_CHECKPOINT_FILE: gmichem_import_checkpoint
##GMICHEM_IMPORT_CHECKPOINT_TYPE: default
#GEOSCHEMCHEM_INTERNAL_RESTART_FILE: geoschemchem_internal_rst
#GEOSCHEMCHEM_INTERNAL_CHECKPOINT_FILE: geoschemchem_internal_checkpoint
#GEOSCHEMCHEM_INTERNAL_CHECKPOINT_TYPE: default
#GEOSCHEMCHEM_IMPORT_RESTART_FILE: geoschemchem_import_rst
#GEOSCHEMCHEM_IMPORT_CHECKPOINT_FILE: geoschemchem_import_checkpoint
#GEOSCHEMCHEM_IMPORT_CHECKPOINT_TYPE: default
#MAM_INTERNAL_RESTART_FILE: mam_internal_rst
#MAM_INTERNAL_CHECKPOINT_FILE: mam_internal_checkpoint
#MAM_INTERNAL_CHECKPOINT_TYPE: default
ACHEM_INTERNAL_RESTART_FILE: achem_internal_rst
ACHEM_INTERNAL_CHECKPOINT_FILE: achem_internal_checkpoint
ACHEM_INTERNAL_CHECKPOINT_TYPE: default
TR_INTERNAL_RESTART_FILE: tr_internal_rst
TR_INTERNAL_CHECKPOINT_FILE: tr_internal_checkpoint
TR_INTERNAL_CHECKPOINT_TYPE: default
TR_IMPORT_RESTART_FILE: tr_import_rst
TR_IMPORT_CHECKPOINT_FILE: tr_import_checkpoint
TR_IMPORT_CHECKPOINT_TYPE: default
HEMCO_INTERNAL_RESTART_FILE: hemco_internal_rst
HEMCO_INTERNAL_CHECKPOINT_FILE: hemco_internal_checkpoint
HEMCO_INTERNAL_CHECKPOINT_TYPE: default
HEMCO_IMPORT_RESTART_FILE: hemco_import_rst
HEMCO_IMPORT_CHECKPOINT_FILE: hemco_import_checkpoint
HEMCO_IMPORT_CHECKPOINT_TYPE: default
#OH_INTERNAL_RESTART_FILE: oh_internal_rst
#OH_INTERNAL_CHECKPOINT_FILE: oh_internal_checkpoint
#OH_INTERNAL_CHECKPOINT_TYPE: default
#OH_IMPORT_RESTART_FILE: oh_import_rst
#OH_IMPORT_CHECKPOINT_FILE: oh_import_checkpoint
#OH_IMPORT_CHECKPOINT_TYPE: default
# OCEAN Model Restart Files
# -------------------------
SALTWATER_IMPORT_RESTART_FILE: saltwater_import_rst
SALTWATER_IMPORT_CHECKPOINT_FILE: saltwater_import_checkpoint
SALTWATER_IMPORT_CHECKPOINT_TYPE: default
OPENWATER_INTERNAL_RESTART_FILE: openwater_internal_rst
OPENWATER_INTERNAL_CHECKPOINT_FILE: openwater_internal_checkpoint
OPENWATER_INTERNAL_CHECKPOINT_TYPE: default
SEAICETHERMO_INTERNAL_RESTART_FILE: seaicethermo_internal_rst
SEAICETHERMO_INTERNAL_CHECKPOINT_FILE: seaicethermo_internal_checkpoint
SEAICETHERMO_INTERNAL_CHECKPOINT_TYPE: default
CICE4_IMPORT_RESTART_FILE: seaice_import_rst
CICE4_IMPORT_CHECKPOINT_FILE: seaice_import_checkpoint
CICE4_IMPORT_CHECKPOINT_TYPE: default
CICE4_INTERNAL_RESTART_FILE: seaice_internal_rst
CICE4_INTERNAL_CHECKPOINT_FILE: seaice_internal_checkpoint
CICE4_INTERNAL_CHECKPOINT_TYPE: default
OCEAN_INTERNAL_RESTART_FILE: ocean_internal_rst
OCEAN_INTERNAL_CHECKPOINT_FILE: ocean_internal_checkpoint
OCEAN_INTERNAL_CHECKPOINT_TYPE: default
# Boundary Datasets
# -----------------
TOPO_MEAN_FILE: topo_dynave.data
TOPO_GWDVAR_FILE: topo_gwdvar.data
TOPO_TRBVAR_FILE: topo_trbvar.data
LAI_FILE: lai.data
GREEN_FILE: green.data
NDVI_FILE: ndvi.data
TILING_FILE: tile.bin
VISDF_FILE: visdf.dat
NIRDF_FILE: nirdf.dat
LNFM_FILE: lnfm.data
ROUTING_FILE: runoff.bin
VEGDYN_INTERNAL_RESTART_FILE: vegdyn.data
KPAR_FILE: SEAWIFS_KPAR_mon_clim.data
# AeroChem Environment
# --------------------
OX_RELAXTIME: 259200. # Standard Options: GCM: 259200., DAS: 0.000
CH4_RELAXTIME: 259200.
N2O_RELAXTIME: 259200.
CFC11_RELAXTIME: 259200.
CFC12_RELAXTIME: 259200.
HCFC22_RELAXTIME: 259200.
H2O_RELAXTIME: 259200.
OX_FRIENDLIES: ANALYSIS:DYNAMICS:TURBULENCE:MOIST
CH4_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
N2O_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
CFC11_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
CFC12_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
H2O_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
HCFC22_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
pchem_clim: species.data
pchem_clim_years: 39
# Age-of-Air Parameters
# ---------------------
#AOA_FRIENDLIES: DYNAMICS:TURBULENCE:MOIST
# Set RADIATION Parameterizations
# -------------------------------
USE_RRTMG_IRRAD: 1.0
USE_RRTMG_SORAD: 1.0
ISOLVAR: 2
USE_NRLSSI2: .TRUE.
SOLAR_CYCLE_FILE_NAME: ExtData/g5gcm/solar/NRLSSI2.v2020.txt
NUM_BANDS: 30
#USE_RRTMGP_IRRAD: 1.0
#USE_RRTMGP_SORAD: 1.0
#RRTMGP_DATA_LW: /discover/nobackup/pnorris/RRTMGP-data.v1.5/rrtmgp/data/rrtmgp-data-lw-g128-210809.nc
#RRTMGP_DATA_SW: /discover/nobackup/pnorris/RRTMGP-data.v1.5/rrtmgp/data/rrtmgp-data-sw-g112-210809.nc
#RRTMGP_CLOUD_OPTICS_COEFFS_LW: /discover/nobackup/pnorris/RRTMGP-data.v1.5/extensions/cloud_optics/rrtmgp-cloud-optics-coeffs-lw.nc
#RRTMGP_CLOUD_OPTICS_COEFFS_SW: /discover/nobackup/pnorris/RRTMGP-data.v1.5/extensions/cloud_optics/rrtmgp-cloud-optics-coeffs-sw.nc
DIURNAL_BIOMASS_BURNING: yes
RATS_PROVIDER: PCHEM # options: PCHEM, GMICHEM, STRATCHEM (Radiatively active tracers)
AERO_PROVIDER: GOCART2G # options: GOCART2G, MAM, none (Radiatively active aerosols)
ANALYSIS_OX_PROVIDER: PCHEM # options: PCHEM, GMICHEM, STRATCHEM, GOCART
# Flag for real-time forecasts (persisted SST) IS_FCST: 1 (AMIP-Style Default: 0)
# -------------------------------------------------------------------------------
IS_FCST: 0
# Time step for aerosol assimilation (GAAS)
# -----------------------------------------
GAAS_DT: 10800 # 3-hourly
# DATAOCEAN Parameters for AMIP-Style Run
# ----------------------------------------
# To compute skin SST over water (or to use SST Analysis Increment) set values to 1
# ---------------------------------------------------------------------------------
USE_SKIN_LAYER: 0
ANALYZE_TS: 0
# Model Tuning Parameters (For CMIP5 recommended SOLAR_CONSTANT and CO2 values, use -1)
# -------------------------------------------------------------------------------------
SOLAR_CONSTANT: -1
CO2: -1
# Flags for SATSIM Output
# -----------------------
USE_SATSIM: 0
USE_SATSIM_ISCCP: 1
USE_SATSIM_MODIS: 0
USE_SATSIM_RADAR: 0
USE_SATSIM_LIDAR: 0
USE_SATSIM_MISR: 0
INTERPOLATE_ATMLM: 0
INTERPOLATE_ATMTAU: 1
INTERPOLATE_OCEAN_ICE_CURRENTS: 0
# Section for ocean
# ----------------
USE_DATASEA:0
OCEAN_NAME: MOM6
USE_DATASEAICE:0
steady_state_ocean: 0
OCEAN_PICE_SCALING: 0.0
# For running MOM5 coupled model in dual ocean mode, uncomment three lines below,
# make sure that regular replay is enabled, proper PRECIP_FILE is chosen,
# sst.data and fraci.data are pointing to read forcing files on tripolar grid,
# the run starts at 21z/03z/09z/15z,
# HISTORY.rc collections have proper ref_time field
# ---------------------------------------------------------------------------
# Section for CICE
# -----------------
USE_CICE_Thermo: 1
PRESCRIBED_ICE: 0
CICE_DT: 450
CICE_NDTE: 300
CICE_GRID: grid_cice.bin
CICE_KMT: kmt_cice.bin
CICE_N_ICE_CATEGORIES:5
CICE_N_ICE_LAYERS:4
CICE_MU_RDG: 3.0
CICE_AH_MAX: 0.3
CICE_STRENGTH: 0
ALBICEV: 0.78
ALBICEI: 0.36
ALBSNOWV: 0.98
ALBSNOWI: 0.7
MIN_FREEZE_SALINITY: 5.0