This respository aims to maintain a list of useful relevant papers and open source codes for MetaBBO. Our implementations of some of these methods can be accessed in MetaBox.
- 1. Survey Papers & Benchmarks
- 2. MetaBBO
- 3. Classic BBO
*The complete list of IEEE CEC series can be access at ntu.edu.sg.
*The complete list of BBOB series can be access at numbbo.
Algorithm | Paper | Original Repository | About |
---|---|---|---|
ALDes | Zhao, Qi, et al. "Automated Metaheuristic Algorithm Design with Autoregressive Learning." arXiv preprint arXiv:2405.03419 (2024). | - | PDF BibTex |
MADAC | Xue, Ke, et al. "Multi-agent dynamic algorithm configuration." Advances in Neural Information Processing Systems 35 (2022): 20147-20161. | - | PDF BibTex |
RL-HPSDE | Tan, Zhiping, et al. "Differential evolution with hybrid parameters and mutation strategies based on reinforcement learning." Swarm and Evolutionary Computation 75 (2022): 101194. | - | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
SYMBOL | Chen, Jiacheng, et al. "Symbol: Generating Flexible Black-Box Optimizers through Symbolic Equation Learning." The Twelfth International Conference on Learning Representations. 2024. | GMC-DRL/Symbol | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
UES-CMA-ES | Bolufé-Röhler, Antonio, and Bowen Xu. "Deep reinforcement learning for smart restarts in exploration-only exploitation-only metaheuristic hybrids." Metaheuristics International Conference. Cham: Springer Nature Switzerland, 2024. | - | PDF BibTex |
AGSEA | Shao, Shuai, Ye Tian, and Xingyi Zhang. "Deep reinforcement learning assisted automated guiding vector selection for large-scale sparse multi-objective optimization." Swarm and Evolutionary Computation 88 (2024): 101606. | - | PDF BibTex |
MSORL | Wang, Xujie, et al. "A multi-swarm optimizer with a reinforcement learning mechanism for large-scale optimization." Swarm and Evolutionary Computation (2024): 101486. | - | PDF BibTex |
MELBA | Chaybouti, Sofian, et al. "Meta-learning of Black-box Solvers Using Deep Reinforcement Learning." NeurIPS 2022, MetaLearn Workshop. 2022. | - | PDF BibTex |
LTO-POMDP | Gomes, Hugo Siqueira, Benjamin Léger, and Christian Gagné. "Meta learning black-box population-based optimizers." arXiv preprint arXiv:2103.03526 (2021). | LTO-POMDP | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
GLHF | Li, Xiaobin, et al. "GLHF: General Learned Evolutionary Algorithm Via Hyper Functions." arXiv preprint arXiv:2405.03728 (2024). | - | PDF BibTex |
LEO | Yu, Peiyu, et al. "Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space." arXiv preprint arXiv:2405.16730 (2024). | - | PDF BibTex |
RIBBO | Song, Lei, et al. "Reinforced In-Context Black-Box Optimization." arXiv preprint arXiv:2402.17423 (2024). | songlei00/RIBBO | PDF BibTex |
NAP | Maraval, Alexandre, et al. "End-to-end meta-Bayesian optimisation with transformer neural processes." Advances in Neural Information Processing Systems 36 (2024). | - | PDF BibTex |
OptFormer | Chen, Yutian, et al. "Towards learning universal hyperparameter optimizers with transformers." Advances in Neural Information Processing Systems 35 (2022): 32053-32068. | google-research/optformer | PDF BibTex |
RNN-Opt | TV, Vishnu, et al. "Meta-learning for black-box optimization." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2019. | - | PDF BibTex |
RNN-OI | Chen, Yutian, et al. "Learning to learn without gradient descent by gradient descent." International Conference on Machine Learning. PMLR, 2017. | - | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
EvoTF | Lange, Robert Tjarko, Yingtao Tian, and Yujin Tang. "Evolution Transformer: In-Context Evolutionary Optimization." arXiv preprint arXiv:2403.02985 (2024). | RobertTLange/evosax | PDF BibTex |
LES | Lange, Robert, et al. "Discovering evolution strategies via meta-black-box optimization." The Eleventh International Conference on Learning Representations. 2023. | - | PDF BibTex |
LGA | Lange, Robert, et al. "Discovering attention-based genetic algorithms via meta-black-box optimization." Proceedings of the Genetic and Evolutionary Computation Conference. 2023. | - | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
AS-LLM | Wu, Xingyu, et al. "Large language model-enhanced algorithm selection: towards comprehensive algorithm representation." International Joint Conference on Artificial Intelligence, 2024. | - | PDF BibTex |
LLMOPT | Huang, Yuxiao, et al. "Towards Next Era of Multi-objective Optimization: Large Language Models as Architects of Evolutionary Operators." arXiv preprint arXiv:2406.08987 (2024). | - | PDF BibTex |
LLaMoCo | Ma, Zeyuan, et al. "LLaMoCo: Instruction Tuning of Large Language Models for Optimization Code Generation." arXiv preprint arXiv:2403.01131 (2024). | LLaMoCo-722A | PDF BibTex |
LLaMEA | van Stein, Niki, and Thomas Bäck. "LLaMEA: A Large Language Model Evolutionary Algorithm for Automatically Generating Metaheuristics." arXiv preprint arXiv:2405.20132 (2024). | - | PDF BibTex |
EvoLLM | Lange, Robert Tjarko, Yingtao Tian, and Yujin Tang. "Large Language Models As Evolution Strategies." arXiv preprint arXiv:2402.18381 (2024). | - | PDF BibTex |
CMOEA-LLM | Wang, Zeyi, et al. "Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization." arXiv preprint arXiv:2405.05767 (2024). | - | PDF BibTex |
LEO | Brahmachary, Shuvayan, et al. "Large Language Model-Based Evolutionary Optimizer: Reasoning with elitism." arXiv preprint arXiv:2403.02054 (2024). | - | PDF BibTex |
EvoPrompt | Guo, Qingyan, et al. "Connecting large language models with evolutionary algorithms yields powerful prompt optimizers." The Twelfth International Conference on Learning Representations (2024). | beeevita/EvoPrompt | PDF BibTex |
Evoprompting | Chen, Angelica, David Dohan, and David So. "Evoprompting: Language models for code-level neural architecture search." Advances in Neural Information Processing Systems 36 (2024). | - | PDF BibTex |
Pluhacek, Michal, et al | Pluhacek, Michal, et al. "Leveraging large language models for the generation of novel metaheuristic optimization algorithms." Proceedings of the Companion Conference on Genetic and Evolutionary Computation. 2023. | - | PDF BibTex |
LMEA | Liu, Shengcai, et al. "Large language models as evolutionary optimizers." arXiv preprint arXiv:2310.19046 (2023). | - | PDF BibTex |
AEL | Liu, Fei, et al. "Algorithm evolution using large language model." arXiv preprint arXiv:2311.15249 (2023). | - | PDF BibTex |
OPRO | Yang, Chengrun, et al. "Large language models as optimizers." arXiv preprint arXiv:2309.03409 (2023). | - | PDF BibTex |
Guo, Pei-Fu, et al | Guo, Pei-Fu, et al. "Towards optimizing with large language models." arXiv preprint arXiv:2310.05204 (2023). | - | PDF BibTex |
OptiMUS | AhmadiTeshnizi, Ali, Wenzhi Gao, and Madeleine Udell. "OptiMUS: Optimization Modeling Using mip Solvers and large language models." arXiv preprint arXiv:2310.06116 (2023). | teshnizi/OptiMUS | PDF BibTex |
MOEA/D-LLM | Liu, Fei, et al. "Large language model for multi-objective evolutionary optimization." arXiv preprint arXiv:2310.12541 (2023). | - | PDF BibTex |
EoH | Liu, Fei, et al. "Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model." arXiv preprint arXiv:2309.03409 (2023). | nobodynobodypaper/EoH | PDF BibTex |
Zhang, Michael R., et al | Zhang, Michael R., et al. "Using Large Language Models for Hyperparameter Optimization." NeurIPS 2023 Foundation Models for Decision Making Workshop. 2023. | - | PDF BibTex |
See also FeiLiu36/LLM4Opt and jxzhangjhu/Awesome-LLM-Prompt-Optimization.
Algorithm | Paper | Original Repository | About |
---|---|---|---|
ModDE | Vermetten, Diederick, et al. "Modular Differential Evolution." arXiv preprint arXiv:2304.09524 (2023). | Dvermetten/ModDE | PDF BibTex |
AMCDE | Ye, Chenxi, et al. "Differential evolution with alternation between steady monopoly and transient competition of mutation strategies." Swarm and Evolutionary Computation 83 (2023): 101403. | - | PDF BibTex |
NL-SHADE-LBC | Stanovov, Vladimir, Akhmedova, Shakhnaz and Semenkin, Eugene "NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 Numerical Optimization." 2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022. | - | PDF BibTex |
MadDE | Biswas, Subhodip, et al. "Improving differential evolution through Bayesian hyperparameter optimization." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021. | subhodipbiswas/ MadDE |
PDF BibTex |
jDE21 | Brest, Janez, Mirjam Sepesy Maučec, and Borko Bošković. "Self-adaptive differential evolution algorithm with population size reduction for single objective bound-constrained optimization: Algorithm j21." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021. | - | PDF BibTex |
NL-SHADE-RSP | Stanovov, Vladimir, Shakhnaz Akhmedova, and Eugene Semenkin. "NL-SHADE-RSP algorithm with adaptive archive and selective pressure for CEC 2021 numerical optimization." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021. | - | PDF BibTex |
EDEV | Wu, Guohua, et al. "Ensemble of differential evolution variants." Information Sciences 423 (2018): 172-186. | - | PDF BibTex |
HMJCDE | Li, Genghui, et al. "A novel hybrid differential evolution algorithm with modified CoDE and JADE." Applied Soft Computing 47 (2016): 577-599. | - | PDF BibTex |
L-SHADE | Tanabe, Ryoji, and Alex S. Fukunaga. "Improving the search performance of SHADE using linear population size reduction." 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. | - | PDF BibTex |
SHADE | Tanabe, Ryoji, and Alex Fukunaga. "Success-history based parameter adaptation for differential evolution." 2013 IEEE Congress on Evolutionary Computation. IEEE, 2013. | - | PDF BibTex |
CoDE | Wang, Yong, Zixing Cai, and Qingfu Zhang. "Differential evolution with composite trial vector generation strategies and control parameters." IEEE Transactions on Evolutionary Computation 15.1 (2011): 55-66. | - | PDF BibTex |
EPSDE | Mallipeddi, Rammohan, et al. "Differential evolution algorithm with ensemble of parameters and mutation strategies." Applied Soft Computing 11.2 (2011): 1679-1696. | - | PDF BibTex |
rJADE | Peng, Fei, et al. "Multi-start JADE with knowledge transfer for numerical optimization." 2009 IEEE Congress on Evolutionary Computation. IEEE, 2009. | - | PDF BibTex |
JADE | Zhang, Jingqiao, and Arthur C. Sanderson. "JADE: adaptive differential evolution with optional external archive." IEEE Transactions on Evolutionary Computation 13.5 (2009): 945-958. | - | PDF BibTex |
jDE | Brest, Janez, et al. "Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems." IEEE Transactions on Evolutionary Computation 10.6 (2006): 646-657. | - | PDF BibTex |
SaDE | Qin, A. Kai, and Ponnuthurai N. Suganthan. "Self-adaptive differential evolution algorithm for numerical optimization." 2005 IEEE Congress on Evolutionary Computation (CEC). Vol. 2. IEEE, 2005. | - | PDF BibTex |
Vanilla DE | Storn, Rainer, and Kenneth Price. "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces." Journal of Global Optimization 11.4 (1997): 341. | - | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
SAHLPSO | Tao, Xinmin, et al. "Self-Adaptive two roles hybrid learning strategies-based particle swarm optimization." Information Sciences 578 (2021): 457-481. | - | PDF BibTex |
EPSO | Lynn, Nandar, and Ponnuthurai Nagaratnam Suganthan. "Ensemble particle swarm optimizer." Applied Soft Computing 55 (2017): 533-548. | - | PDF BibTex |
GLPSO | Yue-Jiao Gong, Jing-Jing Li, Yicong Zhou, Yun Li, Henry Shu-Hung Chung, Yu-hui Shi, Jun Zhang. "Genetic learning particle swarm optimization." IEEE Transactions on Cybernetics 46.10 (2015): 2277-2290. | YuejiaoGong/ genetic_learning_PSO |
PDF BibTex |
sDMS-PSO | Liang, Jing J., et al. "A self-adaptive dynamic particle swarm optimizer." 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015. | - | PDF BibTex |
DMS-PSO | Liang, Jane-Jing, and Ponnuthurai Nagaratnam Suganthan. "Dynamic multi-swarm particle swarm optimizer." Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005.. IEEE, 2005. | - | PDF BibTex |
FIPSO | Mendes, Rui, James Kennedy, and José Neves. "The fully informed particle swarm: simpler, maybe better." IEEE Transactions on Evolutionary Computation 8.3 (2004): 204-210. | - | PDF BibTex |
Vanilla PSO | Kennedy, James, and Russell Eberhart. "Particle swarm optimization." Proceedings of ICNN'95-International Conference on Neural Networks. Vol. 4. IEEE, 1995. | - | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
PSA-CMA-ES | Nishida, Kouhei, and Youhei Akimoto. "Psa-cma-es: Cma-es with population size adaptation." Proceedings of the Genetic and Evolutionary Computation Conference. 2018. | - | PDF BibTex |
CC-CMA-ES | Liu, Jinpeng, and Ke Tang. "Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution." International Conference on Intelligent Data Engineering and Automated Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. | - | PDF BibTex |
BIPOP-CMA-ES | Hansen, Nikolaus. "Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed." Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: late breaking papers. 2009. | - | PDF BibTex |
IPOP-CMA-ES | Auger, Anne, and Nikolaus Hansen. ""A restart CMA evolution strategy with increasing population size." 2005 IEEE Congress on Evolutionary Computation (CEC). Vol. 2. IEEE, 2005. | - | PDF BibTex |
CMA-ES | Hansen, Nikolaus, Sibylle D. Müller, and Petros Koumoutsakos. "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)." Evolutionary Computation 11.1 (2003): 1-18. | - | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
BO | Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. "Practical bayesian optimization of machine learning algorithms." Advances in Neural Information Processing Systems 25 (2012). | - | PDF BibTex |
SMAC3 | Lindauer, Marius, et al. "SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization." The Journal of Machine Learning Research 23.1 (2022): 2475-2483. | automl/SMAC3 | PDF BibTex |
Algorithm | Paper | Original Repository | About |
---|---|---|---|
MFEA(-II) | Gupta, Abhishek, Yew-Soon Ong, and Liang Feng. "Multifactorial evolution: toward evolutionary multitasking." IEEE Transactions on Evolutionary Computation 20.3 (2015): 343-357. Bali, Kavitesh Kumar, et al. "Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II." IEEE Transactions on Evolutionary Computation 24.1 (2019): 69-83. |
- | PDF BibTex |
MOEA/D | Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on Evolutionary Computation 11.6 (2007): 712-731. | - | PDF BibTex |
VNCDE | Zhang, Yu-Hui, et al. "Parameter-free voronoi neighborhood for evolutionary multimodal optimization." IEEE Transactions on Evolutionary Computation 24.2 (2019): 335-349. | - | PDF BibTex |