Skip to content

Commit

Permalink
Add support for Dataflux Iterable Dataset (#17)
Browse files Browse the repository at this point in the history
* add Dataflux Iterable Dataset

* rename to DataFluxIterableDataset

* add test case for multi-worker setup

* update license header year

* update license header year #2

* Address comments
  • Loading branch information
bernardhan33 authored Mar 14, 2024
1 parent a0de75f commit 8c0c45a
Show file tree
Hide file tree
Showing 5 changed files with 467 additions and 3 deletions.
171 changes: 171 additions & 0 deletions dataflux_pytorch/dataflux_iterable_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
"""
Copyright 2024 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

import os
import math
import logging

from torch.utils import data
from google.cloud import storage
from google.api_core.client_info import ClientInfo

import dataflux_core


class Config:
"""Customizable configuration to the DataFluxIterableDataset.
Attributes:
sort_listing_results: A boolean flag indicating if data listing results
will be alphabetically sorted. Default to False.
max_composite_object_size: An integer indicating a cap for the maximum
size of the composite object in bytes. Default to 100000000 = 100 MiB.
num_processes: The number of processes to be used in the Dataflux algorithms.
Default to the number of CPUs from the running environment.
prefix: The prefix that is used to list the objects in the bucket with.
The default is None which means it will list all the objects in the bucket.
max_listing_retries: An integer indicating the maximum number of retries
to attempt in case of any Python multiprocessing errors during
GCS objects listing. Default to 3.
"""

def __init__(
self,
sort_listing_results: bool = False,
max_composite_object_size: int = 100000000,
num_processes: int = os.cpu_count(),
prefix: str = None,
max_listing_retries: int = 3,
):
self.sort_listing_results = sort_listing_results
self.max_composite_object_size = max_composite_object_size
self.num_processes = num_processes
self.prefix = prefix
self.max_listing_retries = max_listing_retries


class DataFluxIterableDataset(data.IterableDataset):
def __init__(
self,
project_name,
bucket_name,
config=Config(),
data_format_fn=lambda data: data,
storage_client=None,
):
"""Initializes the DataFluxIterableDataset.
The initialization sets up the needed configuration and runs data
listing using the Dataflux algorithm.
Args:
project_name: The name of the GCP project.
bucket_name: The name of the GCS bucket that holds the objects to compose.
The Dataflux download algorithm uploads the the composed object to this bucket too.
destination_blob_name: The name of the composite object to be created.
config: A dataflux_iterable_dataset.Config object that includes configuration
customizations. If not specified, a default config with default parameters is created.
data_format_fn: A function that formats the downloaded bytes to the desired format.
If not specified, the default formatting function leaves the data as-is.
storage_client: The google.cloud.storage.Client object initiated with sufficient permission
to access the project and the bucket. If not specified, it will be created
during initialization.
"""
super().__init__()
self.storage_client = storage_client
if not storage_client:
self.storage_client = storage.Client(
project=project_name,
client_info=ClientInfo(user_agent="dataflux/0.0"),
)
self.project_name = project_name
self.bucket_name = bucket_name
self.data_format_fn = data_format_fn
self.config = config
self.dataflux_download_optimization_params = (
dataflux_core.download.DataFluxDownloadOptimizationParams(
max_composite_object_size=self.config.max_composite_object_size
)
)

self.objects = self._list_GCS_blobs_with_retry()

def __iter__(self):
worker_info = data.get_worker_info()
if worker_info is None:
# Single-process data loading.
yield from [
self.data_format_fn(bytes_content)
for bytes_content in dataflux_core.download.dataflux_download_lazy(
project_name=self.project_name,
bucket_name=self.bucket_name,
objects=self.objects,
storage_client=self.storage_client,
dataflux_download_optimization_params=self.dataflux_download_optimization_params,
)
]
else:
# Multi-process data loading. Split the workload among workers.
# Ref: https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset.
per_worker = int(
math.ceil(len(self.objects) / float(worker_info.num_workers))
)
worker_id = worker_info.id
start = worker_id * per_worker
end = min(start + per_worker, len(self.objects))
yield from [
self.data_format_fn(bytes_content)
for bytes_content in dataflux_core.download.dataflux_download_lazy(
project_name=self.project_name,
bucket_name=self.bucket_name,
objects=self.objects[start:end],
storage_client=self.storage_client,
dataflux_download_optimization_params=self.dataflux_download_optimization_params,
)
]

def _list_GCS_blobs_with_retry(self):
"""Retries Dataflux Listing upon exceptions, up to the retries defined in self.config."""
error = None
listed_objects = []
for _ in range(self.config.max_listing_retries):
try:
listed_objects = dataflux_core.fast_list.ListingController(
max_parallelism=self.config.num_processes,
project=self.project_name,
bucket=self.bucket_name,
sort_results=self.config.sort_listing_results,
prefix=self.config.prefix,
).run()
except Exception as e:
logging.error(
f"exception {str(e)} caught running Dataflux fast listing."
)
error = e
continue

# No exception -- we can immediately return the listed objects.
else:
return listed_objects

# Did not break the for loop, therefore all attempts
# raised an exception.
else:
raise error
2 changes: 1 addition & 1 deletion dataflux_pytorch/dataflux_mapstyle_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def __init__(
Args:
project_name: The name of the GCP project.
bucket_name: The name of the GCS bucket that holds the objects to compose.
The function uploads the the composed object to this bucket too.
The Dataflux download algorithm uploads the the composed object to this bucket too.
destination_blob_name: The name of the composite object to be created.
config: A dataflux_mapstyle_dataset.Config object that includes configuration
customizations. If not specified, a default config with default parameters is created.
Expand Down
Loading

0 comments on commit 8c0c45a

Please sign in to comment.