Skip to content

GustavoMourao/eye-Image-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Features

Glaucoma image detection based on convolutional neural networks.

This repository has the structure:

  • Processor.py - Class that implements some image filter signal processing techniques.

  • Interpreter.py - Class that implements data augmentation procediment and CNN processing based on traditional approach and window optimization technique.

  • test_processor.py - Implements unit tests related to Processor.py class methods.

  • test_processor.py - implements training proccess.

  • Graphs.py - Class that implements graphs visualization.

  • train_model.ipynb - Notebook responsible to train simplified model and and Resnet-20 at AWS-Sagemaker.

  • train_transf_net.ipynb - Notebook responsible to train EfficientNet-B0 until EfficientNet-B7 at AWS-Sagemaker.

Besides of that, into the folder AWS_EvalTest_Results you can find some approaches to automatization of experiments related to tunning hyperparameters.

Refereces

Images Datasets

[1] Attila Budai, Joachim Hornegger, Georg Michelson: Multiscale Approach for Blood Vessel Segmentation on Retinal Fundus Images. In Invest Ophthalmol Vis Sci 2009;50: E-Abstract 325, 2009.

Database Adress

[2] C. Pena-Betancor, M. Gonzalez-Hernandez, F. Fumero-Batista, J. Sigut, E. Mesa, S. Alayon, and M. G. de la Rosa, "Estimation of the relative amount of hemoglobin in the cup and neuro-retinal rim using stereoscopic color fundus images," IOVS, pp. IOVS–14–15592, Feb. 2015.

Database Adress

[3] Zhang, Zhuo, et al. "Origa-light: An online retinal fundus image database for glaucoma analysis and research." 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010.

Window optimization

[4] Lee, Hyunkwang, Myeongchan Kim, and Synho Do. "Practical window setting optimization for medical image deep learning." arXiv preprint arXiv:1812.00572 (2018).

General

[5] Thomas Köhler, Attila Budai, Martin Kraus, Jan Odstrcilik, Georg Michelson, Joachim Hornegger. Automatic No-Reference Quality Assessment for Retinal Fundus Images Using Vessel Segmentation, 26th IEEE Internatioal Symposium on Computer-Based Medical Systems 2013, Porto

About

Signal processing experimets with glaucoma eye images

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published