Skip to content

Repository containing my personal notes on ~30 State Only Imitation Learning Papers, used for a Journal Paper.

Notifications You must be signed in to change notification settings

HridayM25/StateOnlyImitationLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

State Only Imitation Learning

List of papers I have covered:

Liu, Y., Gupta, A., Abbeel, P. and Levine, S., 2018, May. Imitation from observation: Learning to imitate behaviors from raw video via context translation. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1118-1125). IEEE.

Pathak, D., Mahmoudieh, P., Luo, G., Agrawal, P., Chen, D., Shentu, Y., Shelhamer, E., Malik, J., Efros, A.A. and Darrell, T., 2018. Zero-shot visual imitation. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 2050-2053).

Torabi, F., Warnell, G. and Stone, P., 2018. Behavioral cloning from observation. arXiv preprint arXiv:1805.01954., IJCAI, 2018 Brown, D., Goo, W., Nagarajan, P. and Niekum, S., 2019, May. Extrapolating beyond suboptimal demonstrations via inverse reinforcement learning from observations. In International conference on machine learning (pp. 783-792). PMLR.

Yang, C., Ma, X., Huang, W., Sun, F., Liu, H., Huang, J. and Gan, C., 2019. Imitation learning from observations by minimizing inverse dynamics disagreement. Advances in neural information processing systems, 32.

Lee, Y., Hu, E.S., Yang, Z. and Lim, J.J., 2019. To follow or not to follow: Selective imitation learning from observations. CoRL, 2019.

Sun, W., Vemula, A., Boots, B. and Bagnell, D., 2019, May. Provably efficient imitation learning from observation alone. In International conference on machine learning (pp. 6036-6045). PMLR.

Torabi, F., Warnell, G. and Stone, P. Generative adversarial imitation from observation. arXiv preprint arXiv:1807.06158., ICML, Workshop, 2019

Edwards, A., Sahni, H., Schroecker, Y. and Isbell, C., 2019, May. Imitating latent policies from observation. In International conference on machine learning (pp. 1755-1763). PMLR.

Liu, F., Ling, Z., Mu, T. and Su, H.. State alignment-based imitation learning. arXiv preprint arXiv:1911.10947., ICLR, 2020

Gangwani, T. and Peng, J., 2020. State-only imitation with transition dynamics mismatch. arXiv preprint arXiv:2002.11879., ICLR, 2020

Zhu, Z., Lin, K., Dai, B. and Zhou, J., 2020. Off-policy imitation learning from observations. Advances in Neural Information Processing Systems, 33, pp.12402-12413.

Kidambi, R., Chang, J. and Sun, W., 2021. Mobile: Model-based imitation learning from observation alone. Advances in Neural Information Processing Systems, 34, pp.28598-28611.

Jaegle, A., Sulsky, Y., Ahuja, A., Bruce, J., Fergus, R. and Wayne, G., 2021, July. Imitation by predicting observations. In International Conference on Machine Learning (pp. 4665-4676). PMLR.

Radosavovic, I., Wang, X., Pinto, L. and Malik, J., 2021, September. State-only imitation learning for dexterous manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7865-7871). IEEE.

Ma, Y., Shen, A., Jayaraman, D. and Bastani, O., 2022, June. Versatile offline imitation from observations and examples via regularized state-occupancy matching. In International Conference on Machine Learning (pp. 14639-14663). PMLR.

Viano, L., Huang, Y.T., Kamalaruban, P., Innes, C., Ramamoorthy, S. and Weller, A., 2022. Robust learning from observation with model misspecification. arXiv preprint arXiv:2202.06003., AAMAS, 2022

Sonwa, M., Hansen, J. and Belilovsky, E.. Imitation from Observation With Bootstrapped Contrastive Learning. arXiv preprint arXiv:2302.06540., NeurIPS, workshop, 2022

Liu, M., Zhu, Z., Zhuang, Y., Zhang, W., Hao, J., Yu, Y. and Wang, J., 2022. Plan your target and learn your skills: Transferable state-only imitation learning via decoupled policy optimization. arXiv preprint arXiv:2203.02214., ICML, 2022

Chen, S., Ma, X. and Xu, Z., 2022. Imitation learning via differentiable physics. arXiv preprint arXiv:2206.04873. CVPR, 2022

Gangwani, T., Zhou, Y. and Peng, J., 2022. Imitation learning from observations under transition model disparity. arXiv preprint arXiv:2204.11446., ICLR, 2022

Monteiro, J., Gavenski, N., Meneguzzi, F. and Barros, R.C., 2023. Self-Supervised Adversarial Imitation Learning. arXiv preprint arXiv:2304.10914., IJCNN, 2023

Li, C., Blaes, S., Kolev, P., Vlastelica, M., Frey, J. and Martius, G., 2023, May. Versatile skill control via self-supervised adversarial imitation of unlabeled mixed motions. In 2023 IEEE international conference on robotics and automation (ICRA) (pp. 2944-2950). IEEE.

Liu, J., He, L., Kang, Y., Zhuang, Z., Wang, D. and Xu, H., 2023. CEIL: Generalized Contextual Imitation Learning. arXiv preprint arXiv:2306.14534., NeuIPS, 2023

Jain, A. and Unhelkar, V.. GO-DICE: Goal-Conditioned Option-Aware Offline Imitation Learning via Stationary Distribution Correction Estimation. arXiv preprint arXiv:2312.10802., AAAI, 2024

About

Repository containing my personal notes on ~30 State Only Imitation Learning Papers, used for a Journal Paper.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published