Skip to content

Commit

Permalink
exclude fig from ex02 in fig folder
Browse files Browse the repository at this point in the history
  • Loading branch information
LukasHoelsch committed Nov 5, 2024
1 parent 603be36 commit 2faf416
Show file tree
Hide file tree
Showing 4 changed files with 143 additions and 139 deletions.
62 changes: 62 additions & 0 deletions exercise/fig/ex02/Fig_diode_switchOff.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
\begin{figure}[htb]
\centering
\begin{tikzpicture}
\tikzmath{
real = \t0, \t1, \t2 \x1;
\x1 = 3;
\t1 = 6;
\t2 = 8;
\t0 = (\t1-\x1)/0.71;
}
\begin{axis}[
xlabel={$t$},
axis lines=middle,
ymin=-1.5, ymax=1.2,
xmin=0, xmax=10,
xtick={\t0,\t1,\t2},
xticklabels={$t_0$,$t_1$,$t_2$},
ticklabel style ={yshift=0.2cm,anchor=south},
yticklabels={},
width=12cm,
height=5cm,
thick,
smooth,
no markers,
grid
]
\draw[white,pattern=north east lines, pattern color=signalorange] (\t0,0) -- (\t1,-1) -- (\t1,0);
%
\node[signalorange, fill=white, inner sep = 1pt, anchor = south] at (axis cs:\t0+1.3,-0.45) {$Q_1$};
%
\draw[white,pattern=north west lines, pattern color=signalgreen] (\t1,0) -- (\t1,-1) -- (\t2,0);
%
\node[signalgreen, fill=white, inner sep = 1pt, anchor = south] at (axis cs:\t1+0.6,-0.45) {$Q_2$};
%
\draw[thick,signalred] (0,0.7) -- (\x1,0.7) -- (\t1,-1) -- (\t2,0);
%
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:2,0.8) {$i_{\mathrm{D}}$};
%
\draw[thin, signalred] (3.5,0.6) -- (4,0.7);
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:4.5,0.55) {$\frac{\mathrm{d}i_{\mathrm{D}}}{\mathrm{d}t}$};
%
\draw[thin, signalred] (7,-0.6) -- (7.8,-0.85);
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:8,-1) {$\frac{\mathrm{d}i_{\mathrm{rr}}}{\mathrm{d}t}$};
%
\draw[thin, signalred] (\t1-0.05,-1.02) -- (\t1-0.3,-1.2);
%
\node[signalred, inner sep = 1pt, anchor = south] at (axis cs:\t1-0.4,-1.45) {$\hat{i}_{\mathrm{rr}}$};
%
\node[black, fill=white, inner sep = 1pt, anchor = south] at (axis cs:2,-0.7) {$Q_{\mathrm{rr}} = Q_{1} + Q_{2}$};
%
\draw[thick, signalblue, dashed] (0,0.1) -- (\t0,0.1) -- (\t0,-0.1) -- (\t1,-0.1) -- (\t1,-1.3) -- (\t2,-1.3) -- (\t2,-1) -- (10,-1);
%
\draw[thin, signalblue] (8.1, -1.3) -- (8.5,-1.3);
%
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:8.8,-1.5) {${U}_{\mathrm{RB}}$};
%
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:2,0.15) {${u}_{\mathrm{D}}$};
\end{axis}
\end{tikzpicture}
\caption{Turn-off behavior of a fast silicon diode.}
\label{fig:TurnOffSiliconDiode}
\end{figure}
58 changes: 58 additions & 0 deletions exercise/fig/ex02/sFig_boost_voltage_efficiency.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
\begin{solutionfigure}[htb]
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
xlabel={$D$},
ylabel={$U_{\mathrm{1}}/U_{\mathrm{2}}$},
axis lines=left,
ymin=0, ymax=10,
xmin=0, xmax=1,
xtick={0,0.2,0.4,0.6,0.8,1.0},
ytick={0,1,2,3,4,5,6,7,8,9,10},
xticklabels={0,0.2,0.4,0.6,0.8,1.0},
yticklabels={0,1,2,3,4,5,6,7,8,9,10},
thick,
smooth,
no markers,
height=7cm,
width = 0.99\textwidth,
grid
]
\addplot[signalblue, domain=0:0.95] {(1-x)/((1-x)^2)};
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,8) {ideal function};
\addplot[signalred, domain=0:1.0] {(1-x)/((1-x)^2+0.2/30)};
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,7) {function with losses};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.45\textwidth}
\begin{tikzpicture}
\begin{axis}[
xlabel={$D$},
ylabel={$\eta$},
axis lines=left,
ymin=0, ymax=1.1,
xmin=0, xmax=1,
xtick={0,0.2,0.4,0.6,0.8,1.0},
ytick={0,0.2,0.4,0.6,0.8,1.0},
xticklabels={0,0.2,0.4,0.6,0.8,1.0},
yticklabels={0,0.2,0.4,0.6,0.8,1.0},
thick,
smooth,
no markers,
height=7cm,
width = 0.99\textwidth,
grid
]
\addplot[signalblue, domain=0:1] {1};
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,0.4) {ideal function};
\addplot[signalred, domain=0:1] {1/(1+(0.2/30)/(1-x)^2)};
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,0.3) {function with losses};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\caption{Voltage ratio (on the left) and the efficiency function (on the right) are visualized. Both functions are dependant on the duty cycle $D$.}
\label{fig:voltageRatioAndEfficiency}
\end{solutionfigure}
19 changes: 19 additions & 0 deletions exercise/fig/ex02/sFig_diode_sw_off_esb.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
\begin{solutionfigure}[htb]
\centering
\begin{circuitikz}[european currents,european resistors,american inductors]
\draw (0,2) to [open, o-o, v = $\hspace{2cm}u_2(t)$, voltage = straight] ++(0,-2)
to ++(-5.3,0);
\draw (0,2) to (2,2);
\draw (2,0) to (0,0);
\draw (2,2) to [R, l=$R$](2,0);
\draw (-6.375,2) ++(0.625,0) node [cuteopenswitchshape, anchor = out, rotate=180] (S) {}
let \p1 = (S.mid) in (S.in) to [short, i=$i_\mathrm{D}(t)$] ++(1,0)
to [inductor, l=$L_{\mathrm{c}}$, v = $u_\mathrm{L}(t)$, voltage = straight] ++(2,0)
to [short] ++(1,0)
to [short, -o, i=$i_2(t)$] (0,2)
(S.mid) to [short, o-*](\x1,0);
\draw (-1.5,2) to [capacitor, *-*, l=$C$, i>^=$i_\mathrm{C}(t)$] ++(0,-2);
\end{circuitikz}
\caption{Equivalent circuit diagram of the diode switch-off event.}
\label{fig:DiodeSwitchOff}
\end{solutionfigure}
143 changes: 4 additions & 139 deletions exercise/tex/exercise02.tex
Original file line number Diff line number Diff line change
Expand Up @@ -277,64 +277,8 @@


The voltage ratio dependant on the duty cycle $D$ is shown in \autoref{fig:voltageRatioAndEfficiency} on the left side. Both functions for the loss-free and lossy operation are visualized. Moreover, on the right side of \autoref{fig:voltageRatioAndEfficiency} the resulting efficiency cures are shown.
\begin{solutionfigure}[htb]
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
xlabel={$D$},
ylabel={$U_{\mathrm{1}}/U_{\mathrm{2}}$},
axis lines=left,
ymin=0, ymax=10,
xmin=0, xmax=1,
xtick={0,0.2,0.4,0.6,0.8,1.0},
ytick={0,1,2,3,4,5,6,7,8,9,10},
xticklabels={0,0.2,0.4,0.6,0.8,1.0},
yticklabels={0,1,2,3,4,5,6,7,8,9,10},
thick,
smooth,
no markers,
height=7cm,
width = 0.99\textwidth,
grid
]
\addplot[signalblue, domain=0:0.95] {(1-x)/((1-x)^2)};
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,8) {ideal function};
\addplot[signalred, domain=0:1.0] {(1-x)/((1-x)^2+0.2/30)};
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,7) {function with losses};
\end{axis}
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}{0.45\textwidth}
\begin{tikzpicture}
\begin{axis}[
xlabel={$D$},
ylabel={$\eta$},
axis lines=left,
ymin=0, ymax=1.1,
xmin=0, xmax=1,
xtick={0,0.2,0.4,0.6,0.8,1.0},
ytick={0,0.2,0.4,0.6,0.8,1.0},
xticklabels={0,0.2,0.4,0.6,0.8,1.0},
yticklabels={0,0.2,0.4,0.6,0.8,1.0},
thick,
smooth,
no markers,
height=7cm,
width = 0.99\textwidth,
grid
]
\addplot[signalblue, domain=0:1] {1};
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,0.4) {ideal function};
\addplot[signalred, domain=0:1] {1/(1+(0.2/30)/(1-x)^2)};
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.5,0.3) {function with losses};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\caption{Voltage ratio (on the left) and the efficiency function (on the right) are visualized. Both functions are dependant on the duty cycle $D$.}
\label{fig:voltageRatioAndEfficiency}
\end{solutionfigure}

\input{fig/ex02/sFig_boost_voltage_efficiency.tex}

\end{solutionblock}

Expand Down Expand Up @@ -420,68 +364,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subtask{Beside the conduction losses, also switching losses need to be considered in practice. In \autoref{fig:TurnOffSiliconDiode} the voltage and current waveforms are visualized for the turn-off event of a diode (reverse recovery effect). Therefore, calculate the turn-off losses for a fast diode with a commutation inductivity loop of $L_{\mathrm{c}} = \SI{500}{\nano\henry}$. The peak reverse recovery current is $\hat{i}_{\mathrm{rr}} = \SI{4}{\ampere}$ and the reverse recovery time is $t_{\mathrm{rr}} = t_2 - t_0 = \SI{46.6}{\nano\second}$.}

\begin{figure}[htb]
\centering
\begin{tikzpicture}
\tikzmath{
real = \t0, \t1, \t2 \x1;
\x1 = 3;
\t1 = 6;
\t2 = 8;
\t0 = (\t1-\x1)/0.71;
}
\begin{axis}[
xlabel={$t$},
axis lines=middle,
ymin=-1.5, ymax=1.2,
xmin=0, xmax=10,
xtick={\t0,\t1,\t2},
xticklabels={$t_0$,$t_1$,$t_2$},
ticklabel style ={yshift=0.2cm,anchor=south},
yticklabels={},
width=12cm,
height=5cm,
thick,
smooth,
no markers,
grid
]
\draw[white,pattern=north east lines, pattern color=signalorange] (\t0,0) -- (\t1,-1) -- (\t1,0);
%
\node[signalorange, fill=white, inner sep = 1pt, anchor = south] at (axis cs:\t0+1.3,-0.45) {$Q_1$};
%
\draw[white,pattern=north west lines, pattern color=signalgreen] (\t1,0) -- (\t1,-1) -- (\t2,0);
%
\node[signalgreen, fill=white, inner sep = 1pt, anchor = south] at (axis cs:\t1+0.6,-0.45) {$Q_2$};
%
\draw[thick,signalred] (0,0.7) -- (\x1,0.7) -- (\t1,-1) -- (\t2,0);
%
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:2,0.8) {$i_{\mathrm{D}}$};
%
\draw[thin, signalred] (3.5,0.6) -- (4,0.7);
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:4.5,0.55) {$\frac{\mathrm{d}i_{\mathrm{D}}}{\mathrm{d}t}$};
%
\draw[thin, signalred] (7,-0.6) -- (7.8,-0.85);
\node[signalred, fill=white, inner sep = 1pt, anchor = south] at (axis cs:8,-1) {$\frac{\mathrm{d}i_{\mathrm{rr}}}{\mathrm{d}t}$};
%
\draw[thin, signalred] (\t1-0.05,-1.02) -- (\t1-0.3,-1.2);
%
\node[signalred, inner sep = 1pt, anchor = south] at (axis cs:\t1-0.4,-1.45) {$\hat{i}_{\mathrm{rr}}$};
%
\node[black, fill=white, inner sep = 1pt, anchor = south] at (axis cs:2,-0.7) {$Q_{\mathrm{rr}} = Q_{1} + Q_{2}$};
%
\draw[thick, signalblue, dashed] (0,0.1) -- (\t0,0.1) -- (\t0,-0.1) -- (\t1,-0.1) -- (\t1,-1.3) -- (\t2,-1.3) -- (\t2,-1) -- (10,-1);
%
\draw[thin, signalblue] (8.1, -1.3) -- (8.5,-1.3);
%
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:8.8,-1.5) {${U}_{\mathrm{RB}}$};
%
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:2,0.15) {${u}_{\mathrm{D}}$};
\end{axis}
\end{tikzpicture}
\caption{Turn-off behavior of a fast silicon diode.}
\label{fig:TurnOffSiliconDiode}
\end{figure}
\input{fig/ex02/Fig_diode_switchOff.tex}

\begin{solutionblock}
Switching losses occur when the diode voltage or current is not zero. In \autoref{fig:TurnOffSiliconDiode} the voltage and current waveforms are shown. The voltage $u_{\mathrm{D}}$ is for the interval $t_0$ until $t_1$ small and, therefore, the switching losses. At the time step $t_1$ the diode is blocking and the reverse breakdown voltage $U_{\mathrm{RB}}$ applies. Due to this much bigger value, the switching losses increases significantly, resulting that only the interval between $t_1$ and $t_2$ is responsible for the switching losses. Hence, the losses are calculated as follows
Expand All @@ -504,25 +387,7 @@
\end{equation}

The equivalent circuit diagram of the diode switch-off event is shown in \autoref{fig:DiodeSwitchOff}.
\begin{solutionfigure}[htb]
\centering
\begin{circuitikz}[european currents,european resistors,american inductors]
\draw (0,2) to [open, o-o, v = $\hspace{2cm}u_2(t)$, voltage = straight] ++(0,-2)
to ++(-5.3,0);
\draw (0,2) to (2,2);
\draw (2,0) to (0,0);
\draw (2,2) to [R, l=$R$](2,0);
\draw (-6.375,2) ++(0.625,0) node [cuteopenswitchshape, anchor = out, rotate=180] (S) {}
let \p1 = (S.mid) in (S.in) to [short, i=$i_\mathrm{D}(t)$] ++(1,0)
to [inductor, l=$L_{\mathrm{c}}$, v = $u_\mathrm{L}(t)$, voltage = straight] ++(2,0)
to [short] ++(1,0)
to [short, -o, i=$i_2(t)$] (0,2)
(S.mid) to [short, o-*](\x1,0);
\draw (-1.5,2) to [capacitor, *-*, l=$C$, i>^=$i_\mathrm{C}(t)$] ++(0,-2);
\end{circuitikz}
\caption{Equivalent circuit diagram of the diode switch-off event.}
\label{fig:DiodeSwitchOff}
\end{solutionfigure}
\input{fig/ex02/sFig_diode_sw_off_esb.tex}
The current $i_{\mathrm{D}}(t)$ is dependant on the voltage $U_2$ by:
\begin{equation}
\Delta i_{\mathrm{D}} = \frac{\mathrm{d}i_{\mathrm{D}}(t)}{\mathrm{d}t} = \frac{U_2}{L_{\mathrm{c}}} = \frac{\SI{60}{\volt}}{\SI{500}{\nano\henry}} = \SI{120}{\ampere\per\micro\second}.
Expand Down

0 comments on commit 2faf416

Please sign in to comment.