Skip to content

Commit

Permalink
Ex07 Task2: Additional update of task description to simplify solution
Browse files Browse the repository at this point in the history
  • Loading branch information
SevenOfNinePE committed Jan 27, 2025
1 parent 79fdf5d commit 485c5d1
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 1 deletion.
3 changes: 3 additions & 0 deletions exercise/fig/ex07/Fig_ThreePhaseInverter_6StepMode.tex
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,9 @@
(i2b) node[anchor=north,color=black]{$i_\mathrm{2b}(t)$}
(jT6c) ++(1,0) node[currarrow](i2c){}
(i2c) node[anchor=north,color=black]{$i_\mathrm{2c}(t)$}
% Add voltage arrow u1
(U1p) ++(0.3,0.5) to [open,v^=$$,voltage = straight] ++(0,-6)coordinate (Uges)
(Uges) ++ (0.3,3) node[anchor=north,color=black]{$U_\mathrm{1}$}
% Add voltage arrow u2an, u2bn and u2cn
(ju2ax) ++(0,-0.8) to [open,v^=$u_\mathrm{2a}(t)$, voltage = straight] ++(3.8,0)
(ju2b) ++(0,-0.8) to [open,v^=$u_\mathrm{2b}(t)$,voltage = straight] ++(3.8,0)
Expand Down
21 changes: 20 additions & 1 deletion exercise/tex/exercise07.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
\centering % Center the table
\begin{tabular}{ll}
\toprule
Input voltages: & $U_\mathrm{1p}=\SI{255}{\volt}$ \quad $U_\mathrm{1m}=\SI{255}{\volt}$ \\
Input voltages: & $U_\mathrm{1}=\SI{510}{\volt}$ \quad $U_\mathrm{1p}=U_\mathrm{1m}=U_\mathrm{1}/2$ \\
Internal voltages: & $u_{\mathrm{2ae}}(t) = \sqrt{2} \cdot \SI{220}{\volt} \cdot \sin(\omega_1t)$ \\
Circular frequency: & $\omega_1 = \SI{2 \pi \cdot 30}{\frac{1}{\second}}$ \\
Inductivity per phase: & $L= \SI{10}{\milli \henry}$ \\
Expand Down Expand Up @@ -190,6 +190,25 @@
\label{sub:DecomposeVoltage}
}
\begin{solutionblock}
In the case of odd and alternating functions corresponding to $f(x)=-f(x+\pi)$ the Fourier coefficients are:
\begin{equation}
\begin{split}
a_\mathrm{k} &= 0 \\
a_\mathrm{k} &= \frac{4}{\pi} \int_0^{\pi/2} f(x)\sin(x) \mathrm{d}x \quad k=\mathrm{odd} \\
f(x) &= \sum_{k}^{} \left( b_k \sin(kx) \right).
\end{split}
\end{equation}
The coefficients $b_k$ are the amplitudes of the respective harmonic. The voltage $u_{\mathrm{2a}}(t)$ needs
only to be integrated up to $\pi/2$. Only the terms with odd order numbers are taken into account.
\begin{equation}
\begin{split}
a_\mathrm{k} &= \frac{4}{\pi} \int_0^{\pi/3} f(x)\sin(x) \mathrm{d}x \quad k=\mathrm{odd} \\
f(x) &= \sum_{k}^{} \left( b_k \sin(kx) \right).
\end{split}
\end{equation}



\input{fig/ex07/Fig_Voltage_U_um_excerpt}
\input{fig/ex07/Fig_graphic_solutions_cos_terms}
\input{fig/ex07/Fig_standardization_to_fudamental_freq.tex}
Expand Down

0 comments on commit 485c5d1

Please sign in to comment.