Skip to content

Commit

Permalink
Update ex03 and enter correction of ex02 (still not completed)
Browse files Browse the repository at this point in the history
  • Loading branch information
SevenOfNinePE committed Nov 8, 2024
1 parent 769ee14 commit 51aa777
Show file tree
Hide file tree
Showing 11 changed files with 251 additions and 46 deletions.
2 changes: 1 addition & 1 deletion exercise/fig/ex02/sFigDia_EfficiencyVSVoltage.tex
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
\node[signalblue, fill=white, inner sep = 1pt, anchor = south] at (axis cs:750,0.997) {$\eta_{\mathrm{opt}}$};
\end{axis}
\end{tikzpicture}
\caption{Duty cycle versus input voltage.}
\caption{Efficiency $\eta_{\mathrm{opt}}$ and $\eta_{\mathrm{sync}}$ versus input voltage.}
\label{fig:EfficiencyAtInputVoltage}
\end{solutionfigure}

Expand Down
6 changes: 3 additions & 3 deletions exercise/fig/ex02/sFigTab_EfficiencyGain.tex
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,10 @@

\begin{solutiontable}[ht]
\centering % Zentriert die Tabelle
\begin{tabular}{lllll}
\begin{tabular}{ll}
\toprule

$U_\mathrm{1}$ & $\Delta\eta$ \\
\multicolumn{1}{c}{$U_\mathrm{1}$} & \multicolumn{1}{c}{$\Delta\eta$} \\
\midrule
$\SI{320}{\volt}$ & 0.609 \\
$\SI{400}{\volt}$ & 0.614 \\
$\SI{720}{\volt}$ & 0.350 \\
Expand Down
5 changes: 4 additions & 1 deletion exercise/fig/ex02/sFigTab_EfficiencyOpt.tex
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,10 @@
\centering % Zentriert die Tabelle
\begin{tabular}{lllll}
\toprule

\multicolumn{1}{c}{$U_\mathrm{1}$} & \multicolumn{1}{c}{$D$} &
\multicolumn{1}{c}{$D$} & \multicolumn{1}{c}{$P_\mathrm{loss}$} &
\multicolumn{1}{c}{$\eta_\mathrm{sync}$} \\
\midrule
$U_\mathrm{1}$ & $D_1$ & $D_1$ & $P_\mathrm{loss}$ & $\eta_\mathrm{opt}$ \\
$\SI{320}{\volt}$ & 1 & 0.2 & $\SI{46.88}{\watt}$ & 99.071 \\
$\SI{400}{\volt}$ & 1 & 0 & $\SI{31.25}{\watt}$ & 99.379 \\
Expand Down
6 changes: 4 additions & 2 deletions exercise/fig/ex02/sFigTab_EfficiencySync.tex
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,10 @@
\centering % Zentriert die Tabelle
\begin{tabular}{lllll}
\toprule

$U_\mathrm{1}$ & $D_1$ & $D_1$ & $P_\mathrm{loss}$ & $\eta_\mathrm{sync}$ \\
\multicolumn{1}{c}{$U_\mathrm{1}$} & \multicolumn{1}{c}{$D$} &
\multicolumn{1}{c}{$D$} & \multicolumn{1}{c}{$P_\mathrm{loss}$} &
\multicolumn{1}{c}{$\eta_\mathrm{sync}$} \\
\midrule
$\SI{320}{\volt}$ & 0.56 & 0.56 & $\SI{78.12}{\watt}$ & 98.462 \\
$\SI{400}{\volt}$ & 0.5 & 0.5 & $\SI{62.50}{\watt}$ & 98.765 \\
$\SI{720}{\volt}$ & 0.36 & 0.36 & $\SI{35.16}{\watt}$ & 99.300 \\
Expand Down
6 changes: 3 additions & 3 deletions exercise/fig/ex02/sFigTab_VoltageIlDutycycle.tex
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{solutiontable}[htb]
\centering % Zentriert die Tabelle
\begin{tabular}{llll}
\begin{tabular}{lll}
\toprule

$U_\mathrm{1}$ & $D$ & $I_\mathrm{L}$ \\
\multicolumn{1}{c}{$U_\mathrm{1}$} & \multicolumn{1}{c}{$D$} & \multicolumn{1}{c}{$I_\mathrm{L}$} \\
\midrule
$\SI{320}{\volt}$ & 0.56 & $\SI{28}{\ampere}$ \\
$\SI{400}{\volt}$ & 0.5 & $\SI{22.5}{\ampere}$ \\
$\SI{720}{\volt}$ & 0.36 & $\SI{19.5}{\ampere}$ \\
Expand Down
2 changes: 1 addition & 1 deletion exercise/fig/ex03/Fig_BoostBuckConverter.tex
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@
% Add coordinate jCv and jCg
(jCv) ++(0,-3) coordinate (jCg)
% Add capacitor C
(jCv) to [C, l=$C$] (jCg)
(jCv) to [C, l=$C$, v_>=$U_0$, voltage=straight] (jCg)
% Add current symbol and T2 with Control
(jCv) ++(2,0) node[nigfete,rotate=90](Trans2){} -- ++(2.5,0) coordinate(T2)
(Trans2.G) to [sqV] ++(0,-1)
Expand Down
48 changes: 48 additions & 0 deletions exercise/fig/ex03/sFigDia_DCLinkVSUoutE3T2.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dutycycle and DC-Link voltage versus output voltage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{solutionfigure}[htb]
\centering
\begin{tikzpicture}
\begin{axis}[,
% x/y range adjustment
xmin=250, xmax=500,
ymin=580, ymax=900,
samples=500,
axis y line=center,
axis x line=middle,
extra y ticks=0,
% Label text
xlabel={$U_\mathrm{2} \text{/V}$},
ylabel={$U_\mathrm{0} \text{/V}$},
% Label adjustment
x label style={at={(axis description cs:1,0)},anchor=west},
y label style={at={(axis description cs:-.05,1)},anchor=south},
width=0.6\textwidth,
height=0.3\textwidth,
% x-Ticks
xtick={250,300,350,400,450,800},
xticklabels={250,300,350,400,450,800},
xticklabel style = {anchor=north},
% y-Ticks
ytick={600,650,700,750,800,850},
yticklabels={600,650,700,750,800,850},
yticklabel style = {anchor=east},
% Grid layout
grid=both,
grid style={line width=.1pt, draw=gray!10},
major grid style={line width=.2pt,draw=gray!50},
]
\addplot[signalblue, domain=282:450] {x+380};
\end{axis}
\end{tikzpicture}
\caption{Intermediate circuit voltage versus output voltage.}
\label{fig:DCLinkVoltageAtOutputVoltage}
\end{solutionfigure}






48 changes: 48 additions & 0 deletions exercise/fig/ex03/sFigDia_DutyCycleVSUoutE3T2.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dutycycle and DC-Link voltage versus output voltage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{solutionfigure}[htb]
\centering
\begin{tikzpicture}
\begin{axis}[,
% x/y range adjustment
xmin=250, xmax=500,
ymin=0.4, ymax=0.65,
samples=500,
axis y line=center,
axis x line=middle,
extra y ticks=0,
% Label text
xlabel={$U_\mathrm{2} \text{/V}$},
ylabel={$D$},
% Label adjustment
x label style={at={(axis description cs:1,0)},anchor=west},
y label style={at={(axis description cs:-.05,1)},anchor=south},
width=0.6\textwidth,
height=0.3\textwidth,
% x-Ticks
xtick={250,300,350,400,450,800},
xticklabels={250,300,350,400,450,800},
xticklabel style = {anchor=north},
% y-Ticks
ytick={0.4,0.45,0.5,0.55,0.6},
yticklabels={0.4,0.45,0.5,0.55,0.6},
yticklabel style = {anchor=east},
% Grid layout
grid=both,
grid style={line width=.1pt, draw=gray!10},
major grid style={line width=.2pt,draw=gray!50},
]
\addplot[signalred, domain=282:450] {(x/380)/(1+x/380)};
\end{axis}
\end{tikzpicture}
\caption{Duty cycle versus output voltage.}
\label{fig:DutyCycleAtOutputVoltage}
\end{solutionfigure}






17 changes: 17 additions & 0 deletions exercise/fig/ex03/sFigTab_DCLinkVoltageDutycycleE3T2.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solution table Output voltage-> DC-Link voltage Duty cycle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{solutiontable}[htb]
\centering % Zentriert die Tabelle
\begin{tabular}{lll}
\toprule
\multicolumn{1}{c}{$U_\mathrm{2}$} & \multicolumn{1}{c}{$U_\mathrm{0}$} & \multicolumn{1}{c}{$D$} \\
\midrule
$\SI{285}{\volt}$ & $\SI{665}{\volt}$ & 0.429\\
$\SI{380}{\volt}$ & $\SI{760}{\volt}$ & 0.5 \\
$\SI{450}{\volt}$ & $\SI{830}{\volt}$ & 0.542\\
\bottomrule
\end{tabular}
\caption{$D$ and $U_\mathrm{0}$ at $U_\mathrm{2}$.}
\label{table:DutyCycleDCLinkVoltageAtOutputVoltage}
\end{solutiontable}
75 changes: 43 additions & 32 deletions exercise/tex/exercise02.tex
Original file line number Diff line number Diff line change
Expand Up @@ -545,10 +545,10 @@
I_\mathrm{L}=I_\mathrm{2} \frac{D}{1-D} = I_\mathrm{2} \left(1+\frac{U_\mathrm{2}}{U_\mathrm{1}} \right).
\label{eq:InductorCurrent}
\end{equation}
If you calculate the current $I_\mathrm{2}$ though the load and use it to calculate $I_\mathrm{L}$,
you get the result for the current through the inductor.
With \eqref{eq:DutyCycle} and \eqref{eq:InductorCurrent} you calculate the numerical values for the three voltages
and get the values displayed in \autoref{table:InductorCurrentDutyCycle}. The plots are shown in
The current $I_\mathrm{2}$ can be calculated based on the power and with $I_\mathrm{2}$,
the current through the inductor is subsequently determined.
The numerical values for the three voltages are calculated with \eqref{eq:DutyCycle} and \eqref{eq:InductorCurrent}.
The result is displayed in \autoref{table:InductorCurrentDutyCycle}. The plots are shown in
\autoref{fig:DutyCycleSyncAtInputVoltage} and \autoref{fig:InductorCurrentAtInputVoltage}

\input{./fig/ex02/sFigTab_VoltageIlDutycycle}
Expand All @@ -567,18 +567,18 @@

\begin{solutionblock}
% Solution
Case 1: With $U_\mathrm{1}$ = $\SI{320}{\volt}$ and $D_1 = 0.9$ you calculate the duty cycle $D_2$ by
Case 1: Using $U_\mathrm{1}$ = $\SI{320}{\volt}$ and $D_1 = 0.9$ the duty cycle $D_2$ is obtained as
\begin{equation}
D_2 = 1 - D_1 \frac{U_\mathrm{1}}{U_\mathrm{2}} = 1 - 0.9 \cdot \frac{\SI{320}{\volt}}{\SI{400}{\volt}}= 0.28.
\end{equation}

Consider one period you calculated the inductor voltage according \autoref{table:VoltageAtInductorInCase1_2}.
\autoref{table:VoltageAtInductorInCase1_2} displays the inductor voltage of one period.
\input{./fig/ex02/sFigTab_Case1a2}
This is displayed in \autoref{fig:VoltageAtInductorInCase1}.
\input{./fig/ex02/sFigDia_InductorVoltageCase1}


Case 2: With $U_\mathrm{1}$ = $\SI{720}{\volt}$ and $D_1 = 0.1$ you calculate the duty cycle $D_1$ by
Case 2: Using $U_\mathrm{1}$ = $\SI{720}{\volt}$ and $D_1 = 0.1$ the duty cycle $D_1$ is obtained as
\begin{equation}
D_1 = \frac{U_\mathrm{2}}{U_\mathrm{1}} \left(1 - D_2 \right)= \frac{\SI{400}{\volt}}{\SI{720}{\volt}} \cdot \left(1 - 0.1\right) = 0.5.
\label{eq:DutyCycleD1}
Expand Down Expand Up @@ -606,7 +606,7 @@
($U_\mathrm{1}$, $U_\mathrm{2}$, $P_\mathrm{2}$) and as a function of $D_\mathrm{1}$ and $D_\mathrm{2}$.}
\begin{solutionblock}
% Solution
With the dependency of $I_\mathrm{L}$ from $I_\mathrm{2}$ and the duty cycle you get
The dependency of $I_\mathrm{L}$ from $I_\mathrm{2}$ and the duty cycle is leading to
\begin{equation}
I_\mathrm{L}=I_\mathrm{2} \frac{1}{1-D_2}= \frac{P_\mathrm{2}}{U_\mathrm{2}} \frac{1}{1-D_2}.
\end{equation}.
Expand All @@ -618,6 +618,8 @@
\begin{solutionblock}
% Solution
Yes, the relationsships are independent from the switching frequency and switching points.
In \autoref{fig:VoltageAtInductorInCase1} and \autoref{fig:VoltageAtInductorInCase2} the area size above and below the zero-line are equal.
This is kept independent of the the switching frequency and the switching points.
\end{solutionblock}

\vspace{2em}\par
Expand All @@ -629,7 +631,7 @@
The relationships calculated under subtask 3.4 and 3.5 can be used for the voltage transformation ratio and the value of $I_\mathrm{L}$.}
\begin{solutionblock}
% Solution
The losses of the transistors are to consider:
The losses of the transistors are:
\begin{equation}
P_\mathrm{loss,T1}=D_1 U_\mathrm{F} I_\mathrm{L}=D_1 U_\mathrm{F} \frac{P_\mathrm{2}}{U_\mathrm{2}} \cdot \frac{1}{1-D_2}
\hspace{1cm} \mathrm{and} \hspace{1cm}
Expand All @@ -651,31 +653,35 @@
\frac{1}{U_\mathrm{2}} \cdot \frac{D_2}{1-D_2}\right).
\label{eq:ploss}
\end{equation}
To minimize the losses depending on duty cycle you consider $P_\mathrm{loss}$=$f(D_2)$.
The losses minimum is determined by differentiating with respect to the duty cycle $D_2$.
\begin{equation}
P_\mathrm{loss}=f(D_2)
\hspace{1cm} \Rightarrow \hspace{1cm}
\frac{\mathrm{d}}{\mathrm{d}D_2} f(D_2)= \frac{1}{\left(1 - D_2 \right)^2}=0.
\label{eq:derivateDutycyle}
\end{equation}

There is no solution in the real number space for equation \eqref{eq:derivateDutycyle}.
If you consider \eqref{eq:ploss} the power loss decreases, when $\frac{D_2}{1-D_2}$ decrease.
The following can be conclude from the result: \\
$\Rightarrow$ Set $D_2$ as small as possible.\\
$\Rightarrow$ Activate $T_2$ only for boost mode.\\
$\Rightarrow$ Set $D_1$ as big as as possible.\\
According \eqref{eq:ploss} the power loss decreases, when $\frac{D_2}{1-D_2}$ decrease.
The following can be conclude from the result:
\begin{itemize}
\item Set $D_2$ as small as possible.
\item Activate $T_2$ only for boost mode.
\item Set $D_1$ as big as as possible.
\end{itemize}
\end{solutionblock}

\subtask{Plot $D_\mathrm{1}$ and $D_\mathrm{2}$ and the efficiency over $U_\mathrm{1}$ and give numerical values
for $U_\mathrm{1} = \SI{320}{\volt}$, $U_\mathrm{1} = \SI{400}{\volt}$ and $U_\mathrm{1} = \SI{720}{\volt}$.}
\begin{solutionblock}
% Solution
The power loss is to calculate with \eqref{eq:ploss} for the 3 different voltages.
You get the efficiency by applying
The efficiency is obtained by applying
\begin{equation}
\eta = \frac{P_\mathrm{2}}{P_\mathrm{loss}+P_\mathrm{2}}.
\end{equation}
With both equations you get the results according \autoref{table:PowerlossDutyCycleEfficiencyOpt}.
This is displayed in \autoref{fig:DutyCycleOptAtInputVoltage}.
Using both equations lead to the results displayed in \autoref{table:PowerlossDutyCycleEfficiencyOpt}
and plotted in \autoref{fig:DutyCycleOptAtInputVoltage}.

\input{./fig/ex02/sFigTab_EfficiencyOpt}
\input{./fig/ex02/sFigDia_DutyCycleVSVoltageOpt}
Expand All @@ -688,7 +694,7 @@
% Solution
Again the equation \eqref{eq:ploss} is used with the condition $D_1$=$D_2$=$D$. This leads to
\begin{equation}
P_\mathrm{loss}=2D U_\mathrm{F} I_\mathrm{L} = \frac{U_\mathrm{f} P_\mathrm{2}}{U_\mathrm{2}} \cdot \frac{2D}{1-D}
P_\mathrm{loss}=2D U_\mathrm{F} I_\mathrm{L} = \frac{U_\mathrm{f} P_\mathrm{2}}{U_\mathrm{2}} \cdot \frac{2D}{1-D}.
\end{equation}
If you enter the 3 operation voltages you get the results according \autoref{table:PowerlossDutyCycleEfficiencySync}.
\input{./fig/ex02/sFigTab_EfficiencySync}
Expand All @@ -705,68 +711,73 @@

\input{./fig/ex02/sFigTab_EfficiencyGain}

The maximum efficiency gain is at $U_\mathrm{1}=\SI{400}{\volt}$. \\
It looks like the efficiency gain is higher within boost mode,
but why is the highest efficiency gain at $\SI{400}{\volt}$? \\
The maximum efficiency gain is at $U_\mathrm{1}=\SI{400}{\volt}$.
It looks like the efficiency gain is higher within boost mode, but why is the highest efficiency gain at $\SI{400}{\volt}$?
Let's consider the power loss at boost mode for the two cases. The power loss needs to be expressed by a function of the voltages:

\begin{equation}
P_\mathrm{loss}=D_1 U_\mathrm{F} I_\mathrm{L} + D_2 U_\mathrm{F} I_\mathrm{L}.
\label{eq:ploss2}
\end{equation}
If following is considered
Considering the following
\begin{equation}
I_\mathrm{L}=\frac{P_\mathrm{2}}{U_\mathrm{1}}
\hspace{1cm} \mathrm{and} \hspace{1cm}
D_1=1
\hspace{1cm} \mathrm{and} \hspace{1cm}
D_2=1-\frac{U_\mathrm{1}}{U_\mathrm{2}}
\end{equation}
this leads to
leads to
\begin{equation}
P_\mathrm{loss,opt}=\frac{2 P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{1}} - \frac{P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{2}}.
\label{eq:Plossopt}
\end{equation}

For the synchronous operation mode following is valid:
consider:
\begin{equation}
I_\mathrm{L}=\frac{P_\mathrm{2}}{U_\mathrm{2}} \cdot \frac{1}{1-D}
\hspace{1cm} \mathrm{and} \hspace{1cm}
D_1=D_2=D
\hspace{1cm} \mathrm{and} \hspace{1cm}
D=\frac{U_\mathrm{2}}{U_\mathrm{1}+U_\mathrm{2}}.
\end{equation}
With \eqref{eq:ploss2} this leads now to
Using \eqref{eq:ploss2} leads to:
\begin{equation}
P_\mathrm{loss,sync}=\frac{P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{1}} + \frac{P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{1}}=\frac{2 P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{1}}.
\label{eq:Plosssync}
\end{equation}

The efficiency can be expressed by
\begin{equation}
\eta = \frac{P_\mathrm{2}}{P_\mathrm{loss}+P_\mathrm{2}}=\frac{1}{1+\frac{P_\mathrm{loss}}{P_\mathrm{2}}}.
\label{eq:efficiencysyncopt}
\end{equation}
If the result of the power losses is inserted into the formula, you get:
Using \eqref{eq:Plosssync} and \eqref{eq:Plossopt} in \eqref{eq:efficiencysyncopt} results in:
\begin{equation}
\eta_\mathrm{opt} = \frac{1}{1+U_\mathrm{F} \left(\frac{2}{U_\mathrm{1}}-\frac{1}{U_\mathrm{2}}\right)}
\hspace{1cm} \mathrm{and} \hspace{1cm}
\eta_\mathrm{sync} = \frac{1}{1+U_\mathrm{F} \frac{2}{U_\mathrm{1}}}.
\label{eq:efficiencies}
\end{equation}

The minimal efficiency gain is the minimum of $\Delta \eta=\eta_\mathrm{opt}-\eta_\mathrm{sync}$.
The efficiency gain is $\Delta \eta=\eta_\mathrm{opt}-\eta_\mathrm{sync}$:

\begin{equation}
\Delta \eta= \frac{\frac{U_\mathrm{F}}{U_\mathrm{2}}}{\left(1+ \frac{2 U_\mathrm{F}}{U_\mathrm{1}}-\frac{U_\mathrm{F}}{U_\mathrm{2}} \right) \left(1+\frac{2 U_\mathrm{F}}{U_\mathrm{1}}\right)}.
\label{eq:efficiencygain}
\end{equation}

The two efficiencies are calculated with \eqref{eq:efficiencies} and displayed in \autoref{fig:EfficiencyAtInputVoltage}.
\input{./fig/ex02/sFigDia_EfficiencyVSVoltage}


Conclusion: \\
$\Rightarrow$ You get the minimal efficiency gain at maximal $U_\mathrm{1}$. \\
$\Rightarrow$ The difference between the power losses of $P_\mathrm{loss,opt}$ and $P_\mathrm{loss,sync}$ in boost mode is the constant factor
$\frac{P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{2}}$
which has a proportionally greater effect on the efficiency with smaller $U_\mathrm{2}$ power losses (here larger $U_\mathrm{1}$ ).
\begin{itemize}
\item \eqref{eq:efficiencies} shows, that $\eta_\mathrm{opt}$ and $\eta_\mathrm{opt}$ in
boost mode differ only by the constant factor $\frac{U_\mathrm{F}}{U_\mathrm{2}}$ which has a relatively greater impact on efficiency at lower $U_\mathrm{2}$ (in this case, higher $U_\mathrm{1}$).
\item The difference between the power losses of $P_\mathrm{loss,opt}$ and $P_\mathrm{loss,sync}$ in boost mode is the constant factor
$\frac{P_\mathrm{2} U_\mathrm{F}}{U_\mathrm{2}}$
which has a proportionally greater effect on the efficiency with smaller $U_\mathrm{2}$ power losses (here larger $U_\mathrm{1}$ ).
\end{itemize}

\end{solutionblock}
Loading

0 comments on commit 51aa777

Please sign in to comment.