Skip to content

Commit

Permalink
Ex05 Task1: Update task to align it to the lecture and add some solut…
Browse files Browse the repository at this point in the history
…ion.
  • Loading branch information
SevenOfNinePE committed Dec 13, 2024
1 parent 01bfea1 commit 613601b
Showing 1 changed file with 39 additions and 12 deletions.
51 changes: 39 additions & 12 deletions exercise/tex/exercise05.tex
Original file line number Diff line number Diff line change
Expand Up @@ -20,31 +20,58 @@
\begin{tabular}{llll}
\toprule

Input voltage: & $u_{\mathrm{1}}(t) = \SI{156}{\volt} \cos(\omega t)$ & Load current: & $I_{\mathrm{0}} = \SI{7.5}{\ampere}$ \\
Input voltage: & $u_{\mathrm{1}}(t) = \SI{156}{\volt} \sin(\omega t)$ & Load current: & $I_{\mathrm{0}} = \SI{7.5}{\ampere}$ \\
Filter capacity: & $C = \SI{330}{\micro\farad}$ & frequency: & $f= \SI{60}{\hertz}$ \\
\bottomrule
\end{tabular}
\caption{Parameters of the PFC rectifier.}
\label{table:ex05_Parameters of the circuit}
\end{table}

The angle $\alpha_\mathrm{1}$ represents the point in time at which two of the four diodes begin to conduct,
i.e., when the capacitor is recharged from the mains supply. From the angle $\alpha_\mathrm{2}$
all four diodes are blocked, meaning the capacitor discharges through the load.
The angle $\alpha$ represent the time range between zero crossing of the supply voltage and the point in time
at which all four diodes are blocked, meaning the capacitor discharges through the load. The angle $\beta$
represents the time range between $\alpha$ and the point in time at which two of the four diodes begin to
conduct, i.e., when the capacitor is recharged from the mains supply.
A steady-state operation is assumed for this task.

\subtask{Calculate the two angles $\alpha_1$ and $\alpha_2$.
Note: It is more convenient to calculate $\alpha_2$ first. For the calculation of $\alpha_1$
you can use the following simple approximation: $sin(x) = x$.
\subtask{Calculate the two angles $\alpha$ and $\beta$.
Note: For the calculation of $\beta$ you can use the following simple approximation: $sin(x) = x$.
(This approximation is sufficiently accurate within a range of approximately $\SI{25}{\degree}$ around the zero point of the sine function.)}
\begin{solutionblock}
if the voltage $\left| u_\mathrm{1}(t) \right|$ is higher than the $u_\mathrm{c}(t)$ the capacitor follows the voltage
$\left|u_\mathrm{1}(t)\right|$.
If $\left| u_\mathrm{1}(t)\right|$ is less than $u_\mathrm{c}(t)$ the capacitor is discharged with the constant current $I_\mathrm{0}$.
The voltage decrease linear with
As long as the voltage $\left| u_\mathrm{1}(t) \right|$ increase the voltage $u_\mathrm{c}(t)$ of the capacitor follows:
\begin{equation}
\frac{d(u(t))}{dt} = \frac{I_\mathrm{0}}{C}.
u_\mathrm{C}(t) = \left| \hat{u_{\mathrm{1}}}\sin(\omega t)\right|.
\end{equation}
If the capacitor supplies the load current $I_\mathrm{0}$ the voltage $u_\mathrm{c}(t)$ at the capacitor
decreases linear with:
\begin{equation}
\frac{d(u_\mathrm{C}(t))}{dt} = -\frac{I_\mathrm{0}}{C}.
\end{equation}
If the voltage $\left| u_\mathrm{1}(t) \right|$ decreases faster than $d(u_\mathrm{C}(t))/dt$
then all diodes blocks and the capacitor supplies the current load $I_\mathrm{0}$. This leads to:
\begin{equation}
\frac{d(u_\mathrm{1}(t))}{dt} = \frac{d(\left| \hat{u_{\mathrm{1}}}\sin(\omega t)\right|)}{dt}
= \omega\left| \hat{u_{\mathrm{1}}}\cos(\omega t)\right| = -\frac{I_\mathrm{0}}{C}.
\label{eq:deltaVoltageAtCapacitor_ex05}
\end{equation}
Solving \eqref{eq:deltaVoltageAtCapacitor_ex05} with respect to $\omega \cdot t = \alpha$ yields
\begin{equation}
\alpha = \arccos(-\frac{I_\mathrm{0}}{\omega C \cdot \hat{u_{\mathrm{1}}}})
= \arccos(-\frac{\SI{7.5}{\ampere}}{2 \pi \cdot \SI{60}{\hertz} \cdot \SI{330}{\micro\farad} \cdot \SI{156}{\volt}}) = \SI{112.8}{\degree}
\end{equation}
In that moment when the voltage $\left| u_\mathrm{1}(t) \right|$ becomes equal to $u_\mathrm{C}(t)$
the discharge of the capacitor stops and $u_\mathrm{C}(t)$ follows again $\left| u_\mathrm{1}(t) \right|$.
The voltage $\left| u_\mathrm{1}(t) \right|$ increases again at $\pi$ with:
\begin{equation}
\left| u_\mathrm{1}sin(\omega t + \pi ) \right| = u_\mathrm{1}sin(\omega t) \quad \text{for} \quad t \leq \pi
\end{equation}
The capacitor is discharging by the load $I_\mathrm{0}$ at $\alpha$, which corresponds to a
voltage of:
\begin{equation}
\left| u_\mathrm{1}sin(\omega t) \right| = u_\mathrm{1}sin(\alpha)
= \SI{156}{\volt} \cdot sin(\SI{112.8}{\degree})=\SI{143.4}{\volt}
\end{equation}

\end{solutionblock}

\vspace{2em}\par
Expand Down

0 comments on commit 613601b

Please sign in to comment.