forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request borglab#365 from borglab/imu-examples
Reworked IMU examples
- Loading branch information
Showing
5 changed files
with
443 additions
and
128 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
/* ---------------------------------------------------------------------------- | ||
* GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
* Atlanta, Georgia 30332-0415 | ||
* All Rights Reserved | ||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
* See LICENSE for the license information | ||
* -------------------------------------------------------------------------- */ | ||
|
||
/** | ||
* @file CombinedImuFactorsExample | ||
* @brief Test example for using GTSAM ImuCombinedFactor | ||
* navigation code. | ||
* @author Varun Agrawal | ||
*/ | ||
|
||
/** | ||
* Example of use of the CombinedImuFactor in | ||
* conjunction with GPS | ||
* - we read IMU and GPS data from a CSV file, with the following format: | ||
* A row starting with "i" is the first initial position formatted with | ||
* N, E, D, qx, qY, qZ, qW, velN, velE, velD | ||
* A row starting with "0" is an imu measurement | ||
* linAccN, linAccE, linAccD, angVelN, angVelE, angVelD | ||
* A row starting with "1" is a gps correction formatted with | ||
* N, E, D, qX, qY, qZ, qW | ||
* Note that for GPS correction, we're only using the position not the | ||
* rotation. The rotation is provided in the file for ground truth comparison. | ||
* | ||
* See usage: ./CombinedImuFactorsExample --help | ||
*/ | ||
|
||
#include <boost/program_options.hpp> | ||
|
||
// GTSAM related includes. | ||
#include <gtsam/inference/Symbol.h> | ||
#include <gtsam/navigation/CombinedImuFactor.h> | ||
#include <gtsam/navigation/GPSFactor.h> | ||
#include <gtsam/navigation/ImuFactor.h> | ||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> | ||
#include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||
#include <gtsam/slam/BetweenFactor.h> | ||
#include <gtsam/slam/dataset.h> | ||
|
||
#include <cstring> | ||
#include <fstream> | ||
#include <iostream> | ||
|
||
using namespace gtsam; | ||
using namespace std; | ||
|
||
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz) | ||
using symbol_shorthand::V; // Vel (xdot,ydot,zdot) | ||
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y) | ||
|
||
namespace po = boost::program_options; | ||
|
||
po::variables_map parseOptions(int argc, char* argv[]) { | ||
po::options_description desc; | ||
desc.add_options()("help,h", "produce help message")( | ||
"data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"), | ||
"path to the CSV file with the IMU data")( | ||
"output_filename", | ||
po::value<string>()->default_value("imuFactorExampleResults.csv"), | ||
"path to the result file to use")("use_isam", po::bool_switch(), | ||
"use ISAM as the optimizer"); | ||
|
||
po::variables_map vm; | ||
po::store(po::parse_command_line(argc, argv, desc), vm); | ||
|
||
if (vm.count("help")) { | ||
cout << desc << "\n"; | ||
exit(1); | ||
} | ||
|
||
return vm; | ||
} | ||
|
||
Vector10 readInitialState(ifstream& file) { | ||
string value; | ||
// Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD) | ||
Vector10 initial_state; | ||
getline(file, value, ','); // i | ||
for (int i = 0; i < 9; i++) { | ||
getline(file, value, ','); | ||
initial_state(i) = stof(value.c_str()); | ||
} | ||
getline(file, value, '\n'); | ||
initial_state(9) = stof(value.c_str()); | ||
|
||
return initial_state; | ||
} | ||
|
||
boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() { | ||
// We use the sensor specs to build the noise model for the IMU factor. | ||
double accel_noise_sigma = 0.0003924; | ||
double gyro_noise_sigma = 0.000205689024915; | ||
double accel_bias_rw_sigma = 0.004905; | ||
double gyro_bias_rw_sigma = 0.000001454441043; | ||
Matrix33 measured_acc_cov = I_3x3 * pow(accel_noise_sigma, 2); | ||
Matrix33 measured_omega_cov = I_3x3 * pow(gyro_noise_sigma, 2); | ||
Matrix33 integration_error_cov = | ||
I_3x3 * 1e-8; // error committed in integrating position from velocities | ||
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2); | ||
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2); | ||
Matrix66 bias_acc_omega_int = | ||
I_6x6 * 1e-5; // error in the bias used for preintegration | ||
|
||
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0); | ||
// PreintegrationBase params: | ||
p->accelerometerCovariance = | ||
measured_acc_cov; // acc white noise in continuous | ||
p->integrationCovariance = | ||
integration_error_cov; // integration uncertainty continuous | ||
// should be using 2nd order integration | ||
// PreintegratedRotation params: | ||
p->gyroscopeCovariance = | ||
measured_omega_cov; // gyro white noise in continuous | ||
// PreintegrationCombinedMeasurements params: | ||
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous | ||
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous | ||
p->biasAccOmegaInt = bias_acc_omega_int; | ||
|
||
return p; | ||
} | ||
|
||
int main(int argc, char* argv[]) { | ||
string data_filename, output_filename; | ||
po::variables_map var_map = parseOptions(argc, argv); | ||
|
||
data_filename = findExampleDataFile(var_map["data_csv_path"].as<string>()); | ||
output_filename = var_map["output_filename"].as<string>(); | ||
|
||
// Set up output file for plotting errors | ||
FILE* fp_out = fopen(output_filename.c_str(), "w+"); | ||
fprintf(fp_out, | ||
"#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx," | ||
"gt_qy,gt_qz,gt_qw\n"); | ||
|
||
// Begin parsing the CSV file. Input the first line for initialization. | ||
// From there, we'll iterate through the file and we'll preintegrate the IMU | ||
// or add in the GPS given the input. | ||
ifstream file(data_filename.c_str()); | ||
|
||
Vector10 initial_state = readInitialState(file); | ||
cout << "initial state:\n" << initial_state.transpose() << "\n\n"; | ||
|
||
// Assemble initial quaternion through GTSAM constructor | ||
// ::Quaternion(w,x,y,z); | ||
Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3), | ||
initial_state(4), initial_state(5)); | ||
Point3 prior_point(initial_state.head<3>()); | ||
Pose3 prior_pose(prior_rotation, prior_point); | ||
Vector3 prior_velocity(initial_state.tail<3>()); | ||
|
||
imuBias::ConstantBias prior_imu_bias; // assume zero initial bias | ||
|
||
int index = 0; | ||
|
||
Values initial_values; | ||
|
||
// insert pose at initialization | ||
initial_values.insert(X(index), prior_pose); | ||
initial_values.insert(V(index), prior_velocity); | ||
initial_values.insert(B(index), prior_imu_bias); | ||
|
||
// Assemble prior noise model and add it the graph.` | ||
auto pose_noise_model = noiseModel::Diagonal::Sigmas( | ||
(Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5) | ||
.finished()); // rad,rad,rad,m, m, m | ||
auto velocity_noise_model = noiseModel::Isotropic::Sigma(3, 0.1); // m/s | ||
auto bias_noise_model = noiseModel::Isotropic::Sigma(6, 1e-3); | ||
|
||
// Add all prior factors (pose, velocity, bias) to the graph. | ||
NonlinearFactorGraph graph; | ||
graph.addPrior<Pose3>(X(index), prior_pose, pose_noise_model); | ||
graph.addPrior<Vector3>(V(index), prior_velocity, velocity_noise_model); | ||
graph.addPrior<imuBias::ConstantBias>(B(index), prior_imu_bias, | ||
bias_noise_model); | ||
|
||
auto p = imuParams(); | ||
|
||
std::shared_ptr<PreintegrationType> preintegrated = | ||
std::make_shared<PreintegratedCombinedMeasurements>(p, prior_imu_bias); | ||
|
||
assert(preintegrated); | ||
|
||
// Store previous state for imu integration and latest predicted outcome. | ||
NavState prev_state(prior_pose, prior_velocity); | ||
NavState prop_state = prev_state; | ||
imuBias::ConstantBias prev_bias = prior_imu_bias; | ||
|
||
// Keep track of total error over the entire run as simple performance metric. | ||
double current_position_error = 0.0, current_orientation_error = 0.0; | ||
|
||
double output_time = 0.0; | ||
double dt = 0.005; // The real system has noise, but here, results are nearly | ||
// exactly the same, so keeping this for simplicity. | ||
|
||
// All priors have been set up, now iterate through the data file. | ||
while (file.good()) { | ||
// Parse out first value | ||
string value; | ||
getline(file, value, ','); | ||
int type = stoi(value.c_str()); | ||
|
||
if (type == 0) { // IMU measurement | ||
Vector6 imu; | ||
for (int i = 0; i < 5; ++i) { | ||
getline(file, value, ','); | ||
imu(i) = stof(value.c_str()); | ||
} | ||
getline(file, value, '\n'); | ||
imu(5) = stof(value.c_str()); | ||
|
||
// Adding the IMU preintegration. | ||
preintegrated->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt); | ||
|
||
} else if (type == 1) { // GPS measurement | ||
Vector7 gps; | ||
for (int i = 0; i < 6; ++i) { | ||
getline(file, value, ','); | ||
gps(i) = stof(value.c_str()); | ||
} | ||
getline(file, value, '\n'); | ||
gps(6) = stof(value.c_str()); | ||
|
||
index++; | ||
|
||
// Adding IMU factor and GPS factor and optimizing. | ||
auto preint_imu_combined = | ||
dynamic_cast<const PreintegratedCombinedMeasurements&>( | ||
*preintegrated); | ||
CombinedImuFactor imu_factor(X(index - 1), V(index - 1), X(index), | ||
V(index), B(index - 1), B(index), | ||
preint_imu_combined); | ||
graph.add(imu_factor); | ||
|
||
auto correction_noise = noiseModel::Isotropic::Sigma(3, 1.0); | ||
GPSFactor gps_factor(X(index), | ||
Point3(gps(0), // N, | ||
gps(1), // E, | ||
gps(2)), // D, | ||
correction_noise); | ||
graph.add(gps_factor); | ||
|
||
// Now optimize and compare results. | ||
prop_state = preintegrated->predict(prev_state, prev_bias); | ||
initial_values.insert(X(index), prop_state.pose()); | ||
initial_values.insert(V(index), prop_state.v()); | ||
initial_values.insert(B(index), prev_bias); | ||
|
||
LevenbergMarquardtParams params; | ||
params.setVerbosityLM("SUMMARY"); | ||
LevenbergMarquardtOptimizer optimizer(graph, initial_values, params); | ||
Values result = optimizer.optimize(); | ||
|
||
// Overwrite the beginning of the preintegration for the next step. | ||
prev_state = | ||
NavState(result.at<Pose3>(X(index)), result.at<Vector3>(V(index))); | ||
prev_bias = result.at<imuBias::ConstantBias>(B(index)); | ||
|
||
// Reset the preintegration object. | ||
preintegrated->resetIntegrationAndSetBias(prev_bias); | ||
|
||
// Print out the position and orientation error for comparison. | ||
Vector3 result_position = prev_state.pose().translation(); | ||
Vector3 position_error = result_position - gps.head<3>(); | ||
current_position_error = position_error.norm(); | ||
|
||
Quaternion result_quat = prev_state.pose().rotation().toQuaternion(); | ||
Quaternion gps_quat(gps(6), gps(3), gps(4), gps(5)); | ||
Quaternion quat_error = result_quat * gps_quat.inverse(); | ||
quat_error.normalize(); | ||
Vector3 euler_angle_error(quat_error.x() * 2, quat_error.y() * 2, | ||
quat_error.z() * 2); | ||
current_orientation_error = euler_angle_error.norm(); | ||
|
||
// display statistics | ||
cout << "Position error:" << current_position_error << "\t " | ||
<< "Angular error:" << current_orientation_error << "\n" | ||
<< endl; | ||
|
||
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n", | ||
output_time, result_position(0), result_position(1), | ||
result_position(2), result_quat.x(), result_quat.y(), | ||
result_quat.z(), result_quat.w(), gps(0), gps(1), gps(2), | ||
gps_quat.x(), gps_quat.y(), gps_quat.z(), gps_quat.w()); | ||
|
||
output_time += 1.0; | ||
|
||
} else { | ||
cerr << "ERROR parsing file\n"; | ||
return 1; | ||
} | ||
} | ||
fclose(fp_out); | ||
cout << "Complete, results written to " << output_filename << "\n\n"; | ||
|
||
return 0; | ||
} |
Oops, something went wrong.