-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
langchain pandas working with sp500 sample but not with meteostat df
- Loading branch information
JAlcocerT
committed
Dec 25, 2024
1 parent
fb46621
commit 84dee60
Showing
17 changed files
with
1,295 additions
and
410 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
import dash | ||
from dash import html | ||
from dash import dcc | ||
from dash.dependencies import Input, Output | ||
|
||
from datetime import datetime, timedelta, date | ||
|
||
from meteostat import Point#, Daily | ||
from meteostat import Daily as MeteoDaily | ||
from meteostat import Stations #new in v1.2 | ||
|
||
from openmeteo_py import Hourly, Options, OWmanager #new in V2 | ||
from openmeteo_py import Daily as OpenMeteoDaily #new in V2 | ||
|
||
import pandas as pd #new in V2 | ||
|
||
import plotly.graph_objects as go #new in V2 | ||
import plotly.express as px | ||
import dash_leaflet as dl | ||
|
||
from helpers.plot_logic import plot_tmax_boxplot, plot_weather_data, plot_forecast_data_hourly | ||
from helpers.update_logic import update_markers, update_weather_plots | ||
|
||
|
||
# def load_html(file_path): | ||
# with open(file_path, 'r') as f: | ||
# return html.Div( | ||
# dangerously_allow_html=True, | ||
# children=f.read() | ||
# ) | ||
|
||
# def load_html(file_path): | ||
# with open(file_path, 'r') as f: | ||
# content = f.read() | ||
# return html.Div( | ||
# dangerously_set_inner_html=content | ||
# ) | ||
|
||
app = dash.Dash(__name__, external_stylesheets=['https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css']) | ||
|
||
app.layout = html.Div( | ||
style={'backgroundColor': '#F5F5F5'}, | ||
children=[ | ||
html.H1('Trip Planner', style={'textAlign': 'center', 'padding': '20px', 'backgroundColor': 'F5F5F5'}), | ||
dcc.DatePickerRange( | ||
id='date-picker', | ||
min_date_allowed=datetime(2000, 1, 1), | ||
max_date_allowed=date.today() - timedelta(days=7), | ||
start_date=datetime(2021, 1, 1), | ||
end_date=datetime(2024, 12, 25), | ||
display_format='MMM DD, YYYY', | ||
style={ | ||
'font-size': '6px', 'display': 'inline-block', 'border-radius': '2px', | ||
'border': '1px solid #ccc', 'color': '#2E2E33', | ||
'border-spacing': '0', 'border-collapse': 'separate' | ||
} | ||
), | ||
dl.Map( | ||
[dl.TileLayer(), dl.LayerGroup(id="layer")], | ||
id='map', | ||
style={'width': '100%', 'height': '50vh', 'margin': "auto", "display": "block"}, | ||
center=[35, 25], | ||
zoom=4, | ||
), | ||
html.H2('Historical Weather Data', style={'textAlign': 'center', 'padding': '20px'}), | ||
dcc.Graph(id='weather-plot'), | ||
html.Label('Select a variable to display in the Boxplot:'), | ||
dcc.Dropdown( | ||
id='boxplot-variable', | ||
options=[ | ||
{'label': 'Temperature Max °C', 'value': 'tmax'}, | ||
{'label': 'Temperature Min °C', 'value': 'tmin'}, | ||
{'label': 'Wind (km/h)', 'value': 'wspd'}, | ||
{'label': 'Rain (mm)', 'value': 'prcp'}, | ||
], | ||
value='tmax' | ||
), | ||
dcc.Graph(id='tmax-boxplot'), | ||
html.H2('Forecasted Weather Data', style={'textAlign': 'center', 'padding': '20px'}), | ||
dcc.Graph(id='forecast-plot'), | ||
# html.Div( | ||
# [ | ||
# load_html('about.html') | ||
# ], | ||
# html.Div( | ||
# [ | ||
# html.Div( | ||
# [ | ||
# html.H4("About"), | ||
# html.A("My Blog - FossEngineer", href="https://fossengineer.com", target="_blank"), | ||
# html.Br(), | ||
# html.A("About this App - FossEngineer", href="https://fossengineer.com/python-trip-planner/", target="_blank"), | ||
# html.Br(), | ||
# html.A("Source Code", href="https://github.com/JAlcocerT/Py_Trip_Planner/", target="_blank"), | ||
# ], | ||
# style={'backgroundColor': '#F5F5F5', 'text-align': 'center'} | ||
# ), | ||
# ], | ||
# style={'display': 'flex', 'justify-content': 'center', 'align-items': 'center', 'display': 'inline-block', 'backgroundColor': '#F5F5F5'} | ||
#) | ||
] | ||
) | ||
|
||
@app.callback( | ||
Output('layer', 'children'), | ||
[Input('map', 'click_lat_lng')], | ||
) | ||
# def update_markers(click_lat_lng): | ||
# if not click_lat_lng: | ||
# click_lat_lng = [35, 25] | ||
# return [ | ||
# dl.Marker(position=click_lat_lng, children=dl.Tooltip(f"({click_lat_lng[0]:.2f}, {click_lat_lng[1]:.2f})")), | ||
# dl.CircleMarker(center=[nearest_lat, nearest_lon], color="#188399",) | ||
# ] | ||
|
||
@app.callback( | ||
[Output('weather-plot', 'figure'), Output('tmax-boxplot', 'figure'), Output('forecast-plot','figure')], | ||
[Input('map', 'click_lat_lng'), Input('date-picker', 'start_date'), Input('date-picker', 'end_date'), Input('boxplot-variable', 'value')], | ||
) | ||
def update_weather_plots(click_lat_lng, start_date, end_date, boxplot_variable): | ||
global nearest_lat, nearest_lon | ||
if not click_lat_lng: | ||
lat, lon = 35, 25 | ||
else: | ||
lat = int(click_lat_lng[0]) | ||
lon = int(click_lat_lng[1]) | ||
|
||
# Get nearby weather stations - V1.2 | ||
stations = Stations() | ||
stations = stations.nearby(lat, lon) | ||
station = stations.fetch(1) # the closest station to the input location | ||
|
||
nearest_lat = station['latitude'].values[0] | ||
nearest_lon = station['longitude'].values[0] | ||
|
||
start = datetime(int(start_date[0:4]), int(start_date[5:7]), int(start_date[8:10])) | ||
end = datetime(2022, 12, 31) | ||
|
||
line_plot = plot_weather_data(nearest_lat, nearest_lon, start, end) | ||
|
||
box_plot = plot_tmax_boxplot(nearest_lat, nearest_lon, start, end, boxplot_variable) | ||
|
||
try: | ||
forecast_plot = plot_forecast_data_hourly(nearest_lat, nearest_lon) | ||
except: | ||
forecast_plot = go.Figure() | ||
|
||
return line_plot, box_plot, forecast_plot | ||
|
||
# Initialize global variables | ||
nearest_lat, nearest_lon = 35, 25 | ||
|
||
# Start of the application | ||
if __name__ == '__main__': | ||
app.run_server(debug=False, host="0.0.0.0", port=8050) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import os | ||
import dash | ||
from dash import callback, html, Input, Output, State | ||
from dash_chat import ChatComponent | ||
from openai import OpenAI | ||
|
||
|
||
#import os | ||
from dotenv import load_dotenv | ||
#from openai import OpenAI | ||
|
||
load_dotenv() | ||
|
||
|
||
#api_key = os.environ.get("OPENAI_API_KEY") | ||
#client = OpenAI(api_key=api_key) | ||
client = OpenAI() | ||
|
||
|
||
app = dash.Dash(__name__) | ||
|
||
app.layout = html.Div([ | ||
ChatComponent( | ||
id="chat-component", | ||
messages=[ | ||
{"role": "assistant", "content": "Hello!"}, | ||
], | ||
) | ||
]) | ||
|
||
@callback( | ||
Output("chat-component", "messages"), | ||
Input("chat-component", "new_message"), | ||
State("chat-component", "messages"), | ||
prevent_initial_call=True, | ||
) | ||
def handle_chat(new_message, messages): | ||
if not new_message: | ||
return messages | ||
|
||
updated_messages = messages + [new_message] | ||
|
||
if new_message["role"] == "user": | ||
response = client.chat.completions.create( | ||
model="gpt-40-mini", | ||
messages=updated_messages, | ||
temperature=1.0, | ||
max_tokens=150, | ||
) | ||
|
||
bot_response = {"role": "assistant", "content": response.choices[0].message.content.strip()} | ||
return updated_messages + [bot_response] | ||
|
||
return updated_messages | ||
|
||
if __name__ == "__main__": | ||
app.run_server(debug=True) |
Oops, something went wrong.