Releases: JuDFTteam/best-of-atomistic-machine-learning
Update: 2024.08.19-13.22
Removed category biomolecules in accordance with issue #125.
Update: 2024.08.15
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- paper-qa (🥇27 · ⭐ 3.8K · 📈) - LLM Chain for answering questions from documents with citations.
Apache-2
ai-agent
- DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems.
Apache-2
- pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics.
MIT
general-tool
probabilistic
- e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks.
Apache-2
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc.
LGPL-3.0
- Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly.
CC-BY-4.0
general-ml
Python
- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases.
CC-BY-4.0
- openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks.
Custom
ML-IAP
C++
- MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery.
MIT
datasets
benchmarking
model-repository
➕ Added Projects
Projects that were recently added to this best-of list.
- QH9 (🥈12 · ⭐ 470 · ➕) - A Quantum Hamiltonian Prediction Benchmark.
CC-BY-NC-SA 4.0
ML-DFT
- DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492.
LGPL-3.0
ML-IAP
pretrained
workflows
datasets
- Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling.
MIT
transformer
pretrained
- OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning.
BSD-3
datasets
- PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs.
MIT
transfer-learning
pretrained
transformer
- SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that..
GPL-3.0
ML-IAP
MD
pretrained
- HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks.
BSD-3
- ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms).
MIT
generative
- MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry.
MIT
ML-IAP
pretrained
rep-learn
MD
- Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry.
Unlicensed
rep-learn
- load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets.
MIT
data-structures
- AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course.
MIT
chemistry
- HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix.
GPL-3.0
rep-learn
magnetism
C-lang
- AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences.
Apache-2
- Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML).
MIT
excited-states
general-tool
- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences..
MIT
datasets
- Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources.
Unlicensed
rep-learn
- Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference.
MIT
active-learning
- SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels.
MIT
viz
- Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials.
MIT
- AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the..
LGPL-3.0
community-resource
model-repository
- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields.
MIT
- ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials.
<a href="http://bit.ly/34MB...
Update: 2024.07.04
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- DeePMD-kit (🥇28 · ⭐ 1.4K · 📈) - A deep learning package for many-body potential energy representation and molecular dynamics.
LGPL-3.0
C++
- SchNetPack (🥇26 · ⭐ 750 · 📈) - SchNetPack - Deep Neural Networks for Atomistic Systems.
MIT
- QUIP (🥈25 · ⭐ 340 · 📈) - libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io.
GPL-2.0
MD
ML-IAP
rep-eng
Fortran
- Ultra-Fast Force Fields (UF3) (🥈15 · ⭐ 55 · 📈) - UF3: a python library for generating ultra-fast interatomic potentials.
Apache-2
- SchNetPack G-SchNet (🥈14 · ⭐ 42 · 📈) - G-SchNet extension for SchNetPack.
MIT
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- GPUMD (🥇21 · ⭐ 410 · 📉) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials..
GPL-3.0
MD
C++
electrostatics
- DP-GEN (🥇21 · ⭐ 280 · 📉) - The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field.
LGPL-3.0
workflows
- DIG: Dive into Graphs (🥈20 · ⭐ 1.8K · 📉) - A library for graph deep learning research.
GPL-3.0
- gpax (🥇17 · ⭐ 190 · 📉) - Gaussian Processes for Experimental Sciences.
MIT
probabilistic
active-learning
- SPICE (🥈11 · ⭐ 130 · 📉) - A collection of QM data for training potential functions.
MIT
ML-IAP
MD
➕ Added Projects
Projects that were recently added to this best-of list.
- LLaMP (🥈11 · ⭐ 36 · ➕) - A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An..
BSD-3
materials-discovery
cheminformatics
generative
MD
language-models
Python
- IPSuite (🥈14 · ⭐ 14 · ➕) - IPSuite is a Python toolkit for FAIR development and deployment of MLPs.
EPL-2.0
workflows
HTC
Python
active-learning
community-resource
MD
- ZnDraw (🥉16 · ⭐ 23 · ➕) - A powerful tool for visualizing, modifying, and analysing atomistic systems.
EPL-2.0
MD
generative
JavaScript
- FAIR Chemistry datasets (🥇21 · ⭐ 700 · ➕) - Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project.
MIT
catalysis
- fairchem (🥈19 · ⭐ 700 · ➕) - FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project (ocp).
Unlicensed
pre-trained
rep-learn
catalysis
Update: 2024.05.23
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- NequIP (🥇24 · ⭐ 540 · 📈) - NequIP is a code for building E(3)-equivariant interatomic potentials.
MIT
- Open Catalyst datasets (🥇20 · ⭐ 660 · 📈) - The datasets of the Open Catalyst project, OC20, OC22.
CC-BY-4.0
- ocp (🥈19 · ⭐ 660 · 📈) - ocp is the Open Catalyst Projects library of state-of-the-art machine learning algorithms for catalysis.
Unlicensed
- Pre-trained OCP models (🥈19 · ⭐ 660 · 📈) - Pre-trained models released as part of the Open Catalyst Project.
Unlicensed
pre-trained
- Chemiscope (🥉17 · ⭐ 110 · 📈) - An interactive structure/property explorer for materials and molecules.
BSD-3
JavaScript
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- DeepChem (🥇36 · ⭐ 5.2K · 📉) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology.
MIT
- SchNetPack (🥇26 · ⭐ 730 · 📉) - SchNetPack - Deep Neural Networks for Atomistic Systems.
MIT
- TorchMD-NET (🥇21 · ⭐ 280 · 📉) - Neural network potentials.
MIT
MD
rep-learn
transformer
pre-trained
- NVIDIA Deep Learning Examples for Tensor Cores (🥈20 · ⭐ 13K · 📉) - State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and..
Custom
educational
drug-discovery
- mp-pyrho (🥉17 · ⭐ 34 · 📉) - Tools for re-griding volumetric quantum chemistry data for machine-learning purposes.
Custom
ML-DFT
➕ Added Projects
Projects that were recently added to this best-of list.
- calorine (🥉8 · ⭐ 10 · 💀) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264.
Custom
- PyNEP (🥉2 · ➕) - A python interface of the machine learning potential NEP used in GPUMD.
MIT
- SOMD (🥉1 · ➕) -
AGPL-3.0
ML-IAP
active-learning
- apax (🥈18 · ⭐ 11 · ➕) - A flexible and performant framework for training machine learning potentials.
MIT
Update: 2024.03.17
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- cdk (🥇24 · ⭐ 460 · 📈) - The Chemistry Development Kit.
LGPL-2.1
cheminformatics
Java
- AI for Science Resources (🥈14 · ⭐ 360 · 📈) - List of resources for AI4Science research, including learning resources.
GPL-3.0 license
- QH9: A Quantum Hamiltonian Prediction Benchmark (🥈14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
CC-BY-NC-SA 4.0
ML-DFT
- Artificial Intelligence for Science (AIRS) (🥉14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
GPL-3.0 license
rep-learn
generative
ML-IAP
MD
ML-DFT
ML-WFT
biomolecules
- QHNet (🥈14 · ⭐ 360 · 📈) - Artificial Intelligence Research for Science (AIRS).
GPL-3.0
rep-learn
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- TorchMD-NET (🥇22 · ⭐ 270 · 📉) - Neural network potentials.
MIT
MD
rep-learn
transformer
pre-trained
- DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · 📉) - A library for graph deep learning research.
GPL-3.0
- mlcolvar (🥈16 · ⭐ 74 · 📉) - A unified framework for machine learning collective variables for enhanced sampling simulations.
MIT
enhanced-sampling
➕ Added Projects
Projects that were recently added to this best-of list.
- pymatviz (🥉17 · ⭐ 78 · ➕) - A toolkit for visualizations in materials informatics.
MIT
general-tool
probabilistic
- FAENet (🥈11 · ⭐ 21 · ➕) -
MIT
- GNoME Explorer (🥉7 · ⭐ 500 · 🐣) - Graph Networks for Materials Exploration Database.
Apache-2
datasets
materials-discovery
- Materials Discovery: GNoME (🥈6 · ⭐ 500 · 🐣) -
Apache-2
r
e
p
-
l
e
a
r
n
,
d
a
t
a
s
e
t
s
- halex (🥉2 · ⭐ 1 · 🐣) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844.
Unlicensed
ML-WFT
excited-states
- TorchMD-NET (🥈20 · ⭐ 220 · ➕) - Neural network potentials based on graph neural networks and equivariant transformers.
MIT
ML-IAP
rep-learn
tranformer
pre-trained
- LLM-Prop (🥉8 · ⭐ 4 · ➕) - A repository for the LLM-Prop implementation.
None found
- MLXDM (🥉7 · ⭐ 4 · 💤) - A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K.
MIT
long-range
- paper-data-redundancy (🥉7 · ⭐ 3 · 🐣) - Codes and data for the paper On the redundancy in large material datasets: efficient and robust learning with less data.
BSD-3
small-data
single-paper
- paper-ml-robustness-material-property (🥉4 · ⭐ 3 · 💤) -
BSD-3
d
a
t
a
s
e
t
s
,
s
i
n
g
l
e
-
p
a
p
e
r
- Materials Data Facility (MDF) (🥈9 · ⭐ 10 · 💤) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,..
Apache-2
- OPTIMADE Python tools (🥇25 · ⭐ 54 · ➕) - Tools for implementing and consuming OPTIMADE APIs in Python.
MIT
- OPTIMADE Tutorial Exercises (🥈8 · ⭐ 11 · ➕) - Tutorial exercises for the OPTIMADE API.
MIT
datasets
- optimade.science (🥉8 · ⭐ 8 · ➕) - A sky-scanner Optimade browser-only GUI.
MIT
datasets
- Does this material exist? (🥉4 · ⭐ 2 · ➕) - Vote on whether you think predicted crystal structures could be synthesised.
MIT
for-fun
materials-discovery
- OPTIMADE providers dashboard (🥉4 · ⭐ 1 · ➕) - A dashboard of known providers.
Unlicensed
- GPUMD (🥇20 · ⭐ 300 · ➕) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials..
GPL-3.0
MD
C++
electrostatics
- nep-data (🥉1 · ⭐ 9 · 💀) - Data related to the NEP machine-learned potential of GPUMD.
Unlicensed
ML-IAP
MD
transport-phenomena
v2023.12.25
Test whether Zenodo latest release DOI 10.5281/zenodo.10430261 is working. That DOI is used in the README DOI badge.
v2023.12.21
Release for Zenodo DOI.
Update: 2023.12.03-21.16
➕ Added Projects
Projects that were recently added to this best-of list.
- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 59 · ➕) - Specification of a common REST API for access to materials databases.
CC-BY-4.0
- MODNet (🥇17 · ⭐ 53 · ➕) - MODNet: a framework for machine learning materials properties.
MIT
pre-trained
small-data
transfer-learning
- Metatensor (🥉15 · ⭐ 25 · ➕) - Storage format for equivariant atomistic machine learning.
BSD-3
- mlcolvar (🥈16 · ⭐ 59 · ➕) - A unified framework for machine learning collective variables for enhanced sampling simulations.
MIT
enhanced-sampling
- JAX-DFT (🥇25 · ⭐ 32K · ➕) - Google Research.
Apache-2
- DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · ➕) - A library for graph deep learning research.
GPL-3.0
- ATOM3D (🥇18 · ⭐ 280 · 💤) - ATOM3D: tasks on molecules in three dimensions.
MIT
biomolecules
benchmarking
- ChemCrow (🥇17 · ⭐ 320 · 🐣) - Chemcrow.
MIT
- ChemDataExtractor (🥈16 · ⭐ 270 · 💀) - Automatically extract chemical information from scientific documents.
MIT
literature-data
- ChemNLP project (🥈16 · ⭐ 110 · ➕) - ChemNLP project.
MIT
datasets
- GT4SD - Generative Toolkit for Scientific Discovery (🥈15 · ⭐ 280 · ➕) - Gradio apps of generative models in GT4SD.
MIT
generative
pre-trained
drug-discovery
- dlpack (🥉14 · ⭐ 800 · 💤) - common in-memory tensor structure.
Apache-2
C++
- Geometric GNN Dojo (🥇12 · ⭐ 350 · ➕) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge.
MIT
rep-learn
- QH9: A Quantum Hamiltonian Prediction Benchmark (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS).
CC-BY-NC-SA 4.0
ML-DFT
- QHNet (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS).
GPL-3.0
rep-learn
- Grad DFT (🥈12 · ⭐ 43 · ➕) - Grad-DFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation..
Apache-2
- pretrained-gnns (🥇10 · ⭐ 870 · ➕) - Strategies for Pre-training Graph Neural Networks.
MIT
pre-trained
- DSECOP (🥈10 · ⭐ 31 · ➕) - This repository contains data science educational materials developed by DSECOP Fellows.
CCO-1.0
- pair_nequip (🥉10 · ⭐ 29 · 💀) - LAMMPS pair style for NequIP.
MIT
ML-IAP
rep-learn
- tinker-hp (🥉9 · ⭐ 69 · ➕) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs.
Custom
- lie-nn (🥈9 · ⭐ 22 · ➕) - Tools for building equivariant polynomials on reductive Lie groups.
MIT
rep-learn
- TurboGAP (🥉9 · ⭐ 14 · ➕) - The TurboGAP code.
Custom
Fortran
- MoLFormers UI (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer.
Apache-2
transformer
Language models
pre-trained
drug-discovery
- MoLFormer (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer.
Apache-2
transformer
pre-trained
drug-discovery
- pair_allegro (🥉8 · ⭐ 26 · ➕) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support.
MIT
ML-IAP
rep-learn
- chemlift (🥉8 · ⭐ 10 · 🐣) - Language-interfaced fine-tuning for chemistry.
MIT
- T-e3nn (🥉8 · ⭐ 6 · 💤) - Time-reversal Euclidean neural networks based on e3nn.
MIT
magnetism
- Awesome Neural Geometry (🥉7 · ⭐ 780 · ➕) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,..
Unlicensed
educational
rep-learn
- COATI (🥉6 · ⭐ 59 · 🐣) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space.
Apache-2
drug-discovery
pre-trained
rep-learn
- Mat2Spec (🥉6 · ⭐ 24 · 💀) -
MIT
spectroscopy
- NequIP-JAX (🥉5 · ⭐ 10 · ➕) - JAX implementation of the NequIP interatomic potential.
Unlicensed
- MAPI_LLM (🥉5 · ⭐ 4 · ➕) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J.
MIT
dataset
- soap_turbo (🥉5 · ⭐ 4 · 💤) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP.
Custom
Fortran
- MACE-tutorials (🥉5 · ⭐ 3 · 🐣) - Another set of tutorials for the MACE interatomic potential by one of the authors.
MIT
ML-IAP
rep-learn
MD
- Point Edge Transformer (PET) (🥉5 · ➕) -...
Update: 2023.08.25-14.45
➕ Added Projects
Projects that were recently added to this best-of list.
- MLDensity_tutorial (🥉1 · ⭐ 3 · 🐣) - Tutorial files to work with ML for the charge density in molecules and solids.
❗Unlicensed
- KFAC-JAX (🥇26 · ⭐ 10K · ➕) - Open source code for AlphaFold.
Apache-2
- AlphaFold (🥇24 · ⭐ 10K · ➕) - Open source code for AlphaFold.
Apache-2
- DM21 (🥇21 · ⭐ 12K · ➕) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described..
Apache-2
- DeepQMC (🥇20 · ⭐ 280 · ➕) - Deep learning quantum Monte Carlo for electrons in real space.
MIT
- FermiNet (🥈15 · ⭐ 550 · ➕) - An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations.
Apache-2
- GElib (🥉9 · ⭐ 15 · ➕) - C++/CUDA library for SO(3) equivariant operations.
MPL-2.0
- Cormorant (🥉6 · ⭐ 51 · 💀) - Codebase for Cormorant Neural Networks.
Unlicensed
- Autobahn (🥉5 · ⭐ 26 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks.
MIT
- SphericalNet ( ⭐ 2 · 💤) - Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..
Unlicensed
- cnine (➕) -
Unlicensed
- chemrev-gpr (🥉4 · ⭐ 5 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.
Unlicensed
- paper-qa (🥇23 · ⭐ 2.6K · 🐣) - LLM Chain for answering questions from documents with citations.
Apache-2
- Best-of Machine Learning with Python (🥇22 · ⭐ 14K · ➕) - A ranked list of awesome machine learning Python libraries. Updated weekly.
CC-BY-4.0
general-ml
Python
- Graph-based Deep Learning Literature (🥈18 · ⭐ 4.3K · ➕) - links to conference publications in graph-based deep learning.
MIT
general-ml
rep-learn
- Awesome Materials Informatics (🥉11 · ⭐ 290 · ➕) - Curated list of known efforts in materials informatics = modern materials science.
Custom
t
o
p
i
c
s
/
m
a
t
e
r
i
a
l
s
-
i
n
f
o
r
m
a
t
i
c
s
- The Collection of Database and Dataset Resources in Materials Science (🥉8 · ⭐ 160 · ➕) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning..
Unlicensed
datasets
- A Highly Opinionated List of Open-Source Materials Informatics Resources (🥉7 · ⭐ 93 · 💀) - A Highly Opinionated List of Open Source Materials Informatics Resources.
MIT
- GitHub topic materials-informatics (➕) -
Unlicensed
- cdk (🥇25 · ⭐ 430 · ➕) - The Chemistry Development Kit.
LGPL-2.1
cheminformatics
Java
- MPContribs (🥇23 · ⭐ 32 · ➕) - Platform for materials scientists to contribute and disseminate their materials data through Materials Project.
MIT
- Open Catalyst datasets (🥇18 · ⭐ 450 · ➕) - The datasets of the Open Catalyst project, OC20, OC22.
CC-BY-4.0
- GT4SD (🥇18 · ⭐ 230 · ➕) - GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.
MIT
pre-trained
drug-discovery
rep-learn
- CHGNet (🥈18 · ⭐ 79 · 🐣) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov.
Custom
MD
pre-trained
electrostatics
magnetism
structure-relaxation
- escnn (🥈17 · ⭐ 200 · ➕) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.
Custom
- MatBench (🥈16 · ⭐ 77 · ➕) - Matbench: Benchmarks for materials science property prediction.
MIT
datasets
benchmarking
- NNPOps (🥈15 · ⭐ 61 · ➕) - High-performance operations for neural network potentials.
MIT
MD
C++
- AI for Science Resources (🥉14 · ⭐ 220 · 🐣) - List of resources for AI4Science research, including learning resources.
GPL-3.0 license
- Artificial Intelligence for Science (AIRS) (🥉14 · ⭐ 220 · 🐣) - Artificial Intelligence for Science (AIRS).
GPL-3.0 license
rep-learn
generative
MLIAP
MD
ML-DFT
ML-WFT
biomolecules
- openmm-torch (🥈14 · ⭐ 130 · ➕) - OpenMM plugin to define forces with neural networks.
Custom
MLIAP
C++
- SPICE (🥈14 · ⭐ 89 · ➕) - A collection of QM data for training potential functions.
MIT
MLIAP
MD
- mp-pyrho (🥉14 · ⭐ 27 · ➕) -
Custom
ML-DFT
- GlassPy (🥈13 · ⭐ 14 · ➕) - Python module for scientists working with glass materials.
GPL-3.0
- mat2vec (🥈12 · ⭐ 590 · ➕) - Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from ...
Update: 2023.06.12-20.27
➕ Added Projects
Projects that were recently added to this best-of list.
- Deep Graph Library (DGL) (🥇37 · ⭐ 12K · ➕) - Python package built to ease deep learning on graph,..
Apache-2
- DeepChem (🥇36 · ⭐ 4.4K · ➕) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry,..
MIT
- RDKit (🥇30 · ⭐ 2.1K · ➕) -
BSD-3
- DeePMD-kit (🥇28 · ⭐ 1.1K · ➕) - A deep learning package for many-body potential..
❗️LGPL-3.0
- Matminer (🥇27 · ⭐ 390 · ➕) - Data mining for materials science.
❗Unlicensed
- SchNetPack (🥇25 · ⭐ 600 · ➕) - SchNetPack - Deep Neural Networks for Atomistic Systems.
❗Unlicensed
- DScribe (🥇25 · ⭐ 320 · ➕) - DScribe is a python package for creating machine learning..
Apache-2
- QUIP (🥈25 · ⭐ 290 · ➕) - libAtoms/QUIP molecular dynamics framework:..
❗Unlicensed
- paper-qa (🥇24 · ⭐ 2.6K · 🐣) - LLM Chain for answering questions from documents with citations.
Apache-2
- e3nn (🥇23 · ⭐ 680 · ➕) - A modular framework for neural networks with Euclidean symmetry.
❗Unlicensed
- dgl-lifesci (🥇23 · ⭐ 580 · ➕) - Python package for graph neural networks in chemistry and..
Apache-2
- MEGNet (🥇22 · ⭐ 450 · ➕) - Graph Networks as a Universal Machine Learning Framework for..
BSD-3
- DP-GEN (🥇22 · ⭐ 220 · ➕) - The deep potential generator to generate a deep-learning..
❗️LGPL-3.0
- dpdata (🥇22 · ⭐ 130 · ➕) - Manipulating multiple atomic simulation data formats, including..
❗️LGPL-3.0
- kgcnn (🥈22 · ⭐ 75 · ➕) - Graph convolution with tf.keras.
MIT
- NVIDIA Deep Learning Examples for Tensor Cores (🥇21 · ⭐ 11K · ➕) - State-of-the-Art Deep Learning scripts organized by..
❗Unlicensed
- TorchANI (🥇21 · ⭐ 390 · ➕) - Accurate Neural Network Potential on PyTorch.
MIT
- MAML (🥈21 · ⭐ 240 · ➕) - Python for Materials Machine Learning, Materials Descriptors, Machine..
BSD-3
- NequIP (🥇20 · ⭐ 390 · ➕) - NequIP is a code for building E(3)-equivariant interatomic potentials.
MIT
- JARVIS-Tools (🥈20 · ⭐ 220 · ➕) - JARVIS-Tools: an open-source software package for..
❗Unlicensed
- ocp (🥈19 · ⭐ 410 · ➕) - ocp is the Open Catalyst Projects library of state-of-the-art machine..
MIT
- exmol (🥇19 · ⭐ 240 · ➕) - Explainer for black box models that predict molecule properties.
MIT
- FitSNAP (🥈19 · ⭐ 100 · ➕) - Software for generating SNAP machine-learning interatomic..
❗️GPL-2.0
- FLARE (🥈18 · ⭐ 220 · ➕) - An open-source Python package for creating fast and accurate interatomic..
MIT
- e3nn-jax (🥈18 · ⭐ 110 · ➕) - jax library for E3 Equivariant Neural Networks.
Apache-2
- MatGL (Materials Graph Library) (🥈18 · ⭐ 70 · ➕) - Graph deep learning library for materials.
BSD-3
- Scikit-Matter (🥈18 · ⭐ 58 · ➕) -
BSD-3
scikit-learn
- MALA (🥇18 · ⭐ 33 · ➕) - Materials Learning Algorithms. A framework for machine learning materials..
BSD-3
- M3GNet (🥈17 · ⭐ 160 · ➕) - Materials graph network with 3-body interactions featuring a DFT..
BSD-3
- XenonPy (🥈17 · ⭐ 110 · ➕) - XenonPy is a Python Software for Materials Informatics.
BSD-3
- Chemiscope (🥇17 · ⭐ 86 · ➕) -
BSD-3
- MAST-ML (🥈17 · ⭐ 82 · ➕) - MAterials Simulation Toolkit for Machine Learning (MAST-ML).
MIT
- DADApy (🥇17 · ⭐ 63 · ➕) - Distance-based Analysis of DAta-manifolds in python.
Apache-2
- Uni-Fold (🥇16 · ⭐ 260 · ➕) - An open-source platform for developing protein models beyond..
Apache-2
- QML (🥉16 · ⭐ 180 · 💀) - QML: Quantum Machine Learning.
MIT
- ALIGNN (🥈16 · ⭐ 130 · ➕) - Atomistic Line Graph Neural Network.
❗Unlicensed
- sGDML (🥈16 · ⭐ 110 · ➕) - sGDML - Reference implementation of the Symmetric Gradient Domain..
MIT
- CatLearn (🥇16 · ⭐ 86 · ➕) -
❗️GPL-3.0
- benchmarking-gnns (🥈15 · ⭐ 2.2K · 💀) - Repository for benchmarking graph neural networks.
MIT
- Uni-Mol (🥈15 · ⭐ 340 · ➕) - Official Repository for the Uni-Mol Series Methods.
MIT
- MoLeR (🥇15 · ⭐ 180 · ➕) - Implementation of MoLeR: a generative model of molecular graphs which..
MIT
- Librascal (🥇15 · ⭐ 68 · ➕) - A scalable and versatile library to generate representations..
❗️LGPL-2.1
- SpheriCart (🥇15 · ⭐ 34 · 🐣) - Multi-language library for the calculation of spherical..
Apache-2
- KLIFF (🥈15 · ⭐ 26 · ➕) - KIM-based Learning-Integrated Fitting Framework (KLIFF).
❗️LGPL-2.1
- CCS_fit (🥈15 · ⭐ 5 · ➕) - Curvature Constrained Splines.
❗️GPL-3.0
- n2p2 (🥈14 · ⭐ 180 · 💤) - n2p2 - A Neural Network Potential Package.
❗️GPL-3.0
- <a href="https://github.c...