Skip to content

KRproject-tech/FP_NSGAII

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 

Repository files navigation

図1

FP_NSGAII

License Matlab Windows

Communication

Twitter

Language

Multi-objective optimization analysis by Non-dominated Sorting Genetic Algorithm (NSGA-II) 1 with Floating Point representation 23 (MATLAB R2007b - ).

This code is validated with MATLAB R2007b or later versions. However, the PlatEMO library (https://github.com/BIMK/PlatEMO), which can operate MATLAB 2018a or later versions, is more convenient and performs faster.

Directory

└─NSGA_2_ver3
    ├─Bench_mark
    │  └─進化計算パラメータ
    │      └─html
    ├─cores
    │  └─functions
    │      └─NSGA_2_functions
    └─save
        └─fig

Usage

[Step 1] Start GUI form

Open the “GUI.fig” from MATLAB.

image

[Step 2] Pre-setting

Edit the code for evaluation functions in "./cores/functions/NSGA_2_functions/evaluation_func.m".

function f_vec = evaluation_func(pop_vec)
%% 評価関数 (pop_vecの行が個体番号,列が個体パラメータ)

x_vec = pop_vec;

%% SCH問題:パレート解 -> x in [0,2]
% f_vec = [x_vec(:,1).^2 ...
%          (x_vec(:,1) - 2).^2 ]; 

%% FON問題:パレート解 -> x1 = x2 = x3 in [-1/√3,1/√3] 
% f_k = @(k, x_vec)( 1 - exp( -sum( (x_vec + (-1).^k/sqrt(3)).^2 , 2) ) );
% f_vec = [f_k(1, x_vec) ...
%          f_k(2, x_vec)];
     
%% テスト問題2
a = 49;b = 4; c = 0.5;
f_1 = @(x_vec)( 0.5*(x_vec(:,1).^2 + x_vec(:,2).^2) + sin(x_vec(:,1).^2 + x_vec(:,2).^2) );
f_2 = @(x_vec)( -exp( -a*(cos( b*(x_vec(:,1) + x_vec(:,2)) ) - ((x_vec(:,1) - x_vec(:,2))) ).^2 - c*(x_vec(:,1) + x_vec(:,2) + 1).^2  ));
f_3 = @(x_vec)( 1./(x_vec(:,1).^2 + x_vec(:,2).^2 + 1) - 1.1*exp(-(x_vec(:,1).^2 + x_vec(:,2).^2)) );

f_vec = [f_1(x_vec) ...
         f_2(x_vec) ...
         f_3(x_vec)];

%% MOP3
% f_1 = @(x_vec)( 0.5*(x_vec(:,1).^2 + x_vec(:,2).^2) + sin(x_vec(:,1).^2 + x_vec(:,2).^2) );
% f_2 = @(x_vec)( ( 3*x_vec(:,1) - 2*x_vec(:,2) + 4 ).^2/8 + ( x_vec(:,1) - x_vec(:,2) + 1 ).^2/27 + 15 );
% f_3 = @(x_vec)( 1./(x_vec(:,1).^2 + x_vec(:,2).^2 + 1) - 1.1*exp(-(x_vec(:,1).^2 + x_vec(:,2).^2)) );
% 
% f_vec = [f_1(x_vec) ...
%          f_2(x_vec) ...
%          f_3(x_vec)];

%% テスト問題 (最適解:部分球面)
% g_func = @(x3)( sin(x3) + 1 );
% f_1 = @(x_vec)( (1 + g_func(x_vec(:,3))).*( abs(cos(x_vec(:,1)).*cos(x_vec(:,2)) ) + 1e-3) );
% f_2 = @(x_vec)( (1 + g_func(x_vec(:,3))).*( abs(cos(x_vec(:,1)).*sin(x_vec(:,2)) ) + 1e-3) );
% f_3 = @(x_vec)( (1 + g_func(x_vec(:,3))).*(abs(sin(x_vec(:,1)) ) + 1e-3) );
% 
% f_vec = [f_1(x_vec) ...
%          f_2(x_vec) ...
%          f_3(x_vec)];

Next, push the "Parameters" button and edit parameters, or edit the code for parameters in "./save/param_setting.m".

%% parameter for NSGA-2

%----------------------- 解析パラメータ ------------------------------------
GENERATION = 200; %% GENERATION[-]
TOURNAMENT_RATE = 0.5; %% TOURNAMENT_RATE[-]
CROSSOVER_RATE = 1.0; %% CROSSOVER_RATE[-]
MUTATION_RATE = 0.4; %% 突然変異個体選択率[-]
MUTATION_RATE_1 = 0.8; %% 突然変異率[-]

%----------------------- 個体パラメータ ------------------------------------
MAX_POP_NUM = 500; %% the number of Populations[-]
POP_LGT = 3; %% Length of variable[-]
% Initial value of populations [-]
pop_weight = 0.1*ones(1,POP_LGT); 
% Mutation change width
pop_mutation_width = 10*pop_weight;

[Step 3] Start optimization

Push the “exe” button or execute the code in "./cores/exe.m", and wait until the finish of the analysis.

[Step 4] Restart optimization (if solutions do not converge at [Step 3])

Execute the code in "./cores/exe_func_restart.m".

[Step 5] Plot results

Push the “plot” button.

[Step 6] View plotted results

Results (figures and movie) plotted by [Step 4] are in "./save" directory.

Optimal results

Optimal solutions are in h_pop_vec{end}(pop_rank{1},:).

Pareto-front is plotted by plot3(f_vec(pop_rank{1},1),f_vec(pop_rank{1},2),f_vec(pop_rank{1},3),'ro')

Gallery

MOP3 bench problem 4

$$ \min_{x \in \mathbb{R}^2} f_1, f_2, f_3, $$

where,

$$ \left. \begin{eqnarray} && f_1(x_1,x_2) = 0.5(x_1^2 + x_2^2) + \sin(x_1^2 + x_2^2) \\ && f_2(x_1,x_2) = \frac{1}{8}(3 x_1^2 - 2 x_2^2 + 4)^2 + \frac{1}{27}(x_1^2 - x_2^2 + 1)^2 + 15 \\ && f_3(x_1,x_2) = \frac{1}{x_1^2 + x_2^2 + 1} - 1.1 \exp( -x_1^2 - x_2^2 ) \end{eqnarray} \right). $$

untitled

ZDT3 bench problem 5

$$ \min_{x \in \mathbb{R}^N} f_1, f_2, $$

where, $x_i := 2^{-1} \left(\frac{2}{\pi} \tan^{-1}{ x^*_i} + 1\right), i \in \{1, \ldots, N \}, N=30$ and,

$$ \left. \begin{eqnarray} && f_1(x_i) = x_1 \\ && f_2(x_i) = g(x_i) h( f_1(x_i), g(x_i)) \\ && g(x_i) := 1 + \frac{9}{N-1} \sum_{k=2}^N x_k \\ && h(f_1, g) := 1 - \sqrt{ \frac{f_1}{g} } - \frac{f_1}{g} \sin{ 10 \pi f_1 } \\ \end{eqnarray} \right). $$

The red solid line includes the analytical solution of the Pareto front for the ZDT3 problem,

$$ \left. \begin{eqnarray} && x_i = 0, i \in \{2, \ldots, N \} \\ && x_1 \in [0, 1] \\ \end{eqnarray} \right). $$

Namely,

$$ \left. \begin{eqnarray} && g(x_i) = 1 \\ && f_2(x_i) = g(x_i) \cdot h( f_1(x_i), g(x_i)) = 1 \cdot h( f_1(x_i), 1) = 1 - \sqrt{ f_1 } - f_1 \sin{ 10 \pi f_1 } \\ \end{eqnarray} \right). $$

GXatie2bwAQvkk0

DTLZ7 bench problem 6

$$ \min_{x \in \mathbb{R}^N} f_1, f_2, f_3, $$

where, $x_i := 2^{-1} \left(\frac{2}{\pi} \tan^{-1}{ x^*_i} + 1\right), i \in \{1, \ldots, N \}, N=20$ and,

$$ \left. \begin{eqnarray} && f_1(x_i) = x_1 \\ && f_2(x_i) = x_2 \\ && f_3(x_i) = (1 + g(x_i)) h( f_1(x_i), f_2(x_i), g(x_i)) \\ && g(x_i) := 1 + \frac{9}{N} \sum_{k=2}^N x_k \\ && h(f_1, f_2, g) := 3 - \sum_{k=1}^{2} \frac{f_k}{1 + g} (1 + \sin{ 3 \pi f_k }) \\ \end{eqnarray} \right). $$

image

References

Footnotes

  1. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182–197. doi:10.1109/4235.996017.

  2. C. Su, A genetic algorithm approach employing floating point representation for economic dispatch of electric power, in: The International Congress on Modelling and Simulation 1997, Vol. 204, 1997, pp. 1444–1449.

  3. Reducing the Power Consumption of a Shape Memory Alloy Wire Actuator Drive by Numerical Analysis and Experiment, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 4 (2018).
    https://doi.org/10.1109/TMECH.2018.2836352

  4. Veldhuizen, D.A.V. and Lamont, G.B., Multiobjective evolutionary algorithm test suites, Proceedings of the 1999 ACM symposium on Applied computing, February 1999.

  5. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and Fonseca, da V., Performance assessment of multiobjective optimizers: an analysis and review, IEEE Transactions on Evolutionary Computation, Vol. 7, No. 2, pp. 117–132 (2003).

  6. K. Deb et al, Scalable Test Problems for Evolutionary Multi-Objective Optimization, TIK-Technical Report No. 112, 2001.

Releases

No releases published

Packages

No packages published