Skip to content

Releases: KevinMusgrave/pytorch-adapt

v0.0.83

30 Jan 00:37
Compare
Choose a tag to compare

Fixed the pytorch-metric-learning version to 1.6.3.

v0.0.82

01 Dec 16:44
3cef36f
Compare
Choose a tag to compare

Features

domains can now be passed into CLossHook:

CLossHook(domains=["src", "target"])

v0.0.81

20 Sep 15:11
0a0caf1
Compare
Choose a tag to compare

Features

  • Added a new base validator SimpleLossValidator
  • Added BNMValidator

v0.0.80

02 Sep 04:34
Compare
Choose a tag to compare

Features

  • Added pretrained models for DomainNet126
  • Added transforms.classification.get_timm_transform

Bug fixes

  • Fixed bug where map_location wasn't being used in a useful way when downloading pretrained models.
  • Fixed some formatting issues in the documentation.

v0.0.79

16 Aug 03:34
6fbae70
Compare
Choose a tag to compare

Features

  • Added APValidator
  • Added adapters.MultiLabelClassifier
  • Added hooks.MultiLabelClassifierHook
  • Added frameworks.ignite.IgniteMultiLabelClassification
  • Added models.pretrained_scores

v0.0.78

12 Aug 04:03
a0fbdd7
Compare
Choose a tag to compare

Features

  • Added VOCMultiLabel dataset
  • Added Clipart1kMultiLabel dataset
  • Added get_voc_multilabel dataset getter

Breaking changes

  • Moved get_mnist_transform, get_resnet_transform, and GrayscaleToRGB to a new transforms module

v0.0.77

23 Jul 05:19
8f0b28c
Compare
Choose a tag to compare

Features

Made DomainNet126 downloadable:

from pytorch_adapt.datasets import get_domainnet126
datasets = get_domainnet126(["clipart"], ["real"], folder=".", download=True)

v0.0.76

04 Jul 19:35
9d54fb0
Compare
Choose a tag to compare

Code change

Simplified code in frameworks.ignite.checkpoint_utils by using the latest version of pytorch-ignite.

v0.0.75

28 Jun 17:44
448c7d5
Compare
Choose a tag to compare

Features

Removed memory-inefficient operation from MCCLoss

v0.0.74

30 May 12:44
97afa6d
Compare
Choose a tag to compare

Features

  • Pass kwargs down from pretrained model getters to load_state_dict_from_url. For example, this allows map_location to be specified:
from pytorch_adapt.models import office31C

model = office31C(domain="dslr", pretrained=True, map_location=torch.device("cpu"))