Skip to content

Commit

Permalink
Tensorflow_Transfer_learning_modified
Browse files Browse the repository at this point in the history
  • Loading branch information
LiJell committed Mar 8, 2022
1 parent 0c39aa7 commit e598e72
Showing 1 changed file with 206 additions and 0 deletions.
206 changes: 206 additions & 0 deletions Tensorflow/Transfer_learning.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
# Dogs vs. Cats

- Google Colab 사용
- Runtime에서 TPU 사용 추천

- Dogs vs Cats dataset
- https://www.kaggle.com/c/dogs-vs-cats/data
- 25000 images (12500 cats and 12500 dogs)
Expand Down Expand Up @@ -109,3 +112,206 @@ model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4),
```

![image-20220307174011390](../image.assets/image-20220307174011390.png)

- 문제 유형마다 함수가 어느정도 정해져있음

![image-20220308133622867](../image.assets/image-20220308133622867.png)

---



#### Data Preprocessing

```python
from tensorflow.keras.preprocessing.image import ImageDataGenerator


train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150,150),
batch_size=20,
class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150,150),
batch_size=20,
class_mode='binary'
)
```

- ImageDataGenerator 클래스는 디스크에 있는 이미지 파일을 읽어 전처리 된 배치 텐서로 자동으로 바꾸어 주는 파이썬 제너레이터를 만들어 줌

```python
for data_batch, labels_batch in train_generator:
print('배치 데이터 크기:', data_batch.shape)
print('배치 레이블 크기:', labels_batch.shape)
break

'''
배치 데이터 크기: (20, 150, 150, 3)
배치 레이블 크기: (20,)
'''
```

```python
history = model.fit_generator( # 배치 제너레이터를 사용하여 모델 훈련
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50
)
model.save('/content/drive/MyDrive/tensflow/cats_and_dogs_small_1.h5') # 모델 저장
```

```python
import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc)+1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()
```

![image-20220308185343204](../image.assets/image-20220308185343204.png)

---



#### Data Augmentation

- 성능 향상을 위해 원래 데이터에 랜덤변환을 적용하여 부풀림

```python
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest'
)
```

```python
from keras.preprocessing import image
fnames = sorted([os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)])
img_path = fnames[3] # 증식할 이미지 선택
img = image.load_img(img_path, target_size=(150,150)) # 이미지를 읽고 크기 변경
x = image.img_to_array(img) # (150,150,3) 크기의 numpy 배열로 변환
x = x.reshape((1,)+x.shape) # (1,150,150,3) 크기로 변환
i=0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i%4 == 0:
break
plt.show()
```

![image-20220308185403163](../image.assets/image-20220308185403163.png)

```python
model = models.Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(150,150,3)))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
from tensorflow.keras import optimizers
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
```

![image-20220308185444644](../image.assets/image-20220308185444644.png)

```python
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
)
test_datagen = ImageDataGenerator(rescale=1./255) # 검증 데이터는 증식되민 안됨
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150,150),
batch_size=32,
class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150,150),
batch_size=32,
class_mode='binary'
)
'''
Found 2000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.
'''
```

```python
history = model.fit_generator( # 배치 제너레이터를 사용하여 모델 훈련
train_generator,
steps_per_epoch=50,
epochs=300,
validation_data=validation_generator,
validation_steps=50
)
# 마운드한 구글 드라이브에 저장
model.save('/content/drive/MyDrive/tensflow/cats_and_dogs_small_2.h5')
```

```python
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
```

![image-20220308192540554](../image.assets/image-20220308192540554.png)

0 comments on commit e598e72

Please sign in to comment.