Skip to content

LuoXishuang0712/VHR-BirdPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VHR-BirdPose

About this repo: paper | HRNet_readme

What we use: HRNet | Animal Kingdom | ViTPose | Timm

Environment

This code has been validated on:

  • NVIDIA Geforce RTX 3090Ti (CUDA11.0, PyTorch1.7.0+cu110, Ubuntu20.04)
  • NVIDIA Tesla V100-PCIE 32GB (CUDA10.2, PyTorch1.10.0, Ubuntu18.04)

Installation

  1. Require a copy of Animal Kingdom and prepare the data alone with the code according to the readme of pose estimation task, you can stop after finish the Step3 of the section "Instructions to run Pose Estimation models".
  2. Clone this project and execute cp $OUR_REPO/lib/models/pose_vhr.py $OUR_REPO/lib/models/cross_attn.py $OUR_REPO/lib/models/vit.py $OUR_REPO/lib/models/base_backbone.py $AK_PE/code/hrnet/lib/models/, cp -r $OUR_REPO/experiments/mpii/vhrbirdpose $AK_PE/code/hrnet/experiments/mpii/, and cp -f $OUR_REPO/lib/utils/utils.py $AK_PE/code/hrnet/lib/utils/, you may need specified the paths to out reporistory and pose estimation folder of Animal Kingdom by executing export OUT_REPO={PATH TO THIS PROJECT} and export AK_PE={PATH TO POSE ESTIMATION}.

    For Windows, just simply copy the lib/models and experiments/mpii/vhr to the appearently same place in the %ANIMAL_KINGDOM_ROOT%/pose_estimation/code/hrnet by using GUI or use PowerShell/Cygwin or others posix compact shell to execute the shell code above.

  3. Append import models.pose_vhr to the end of the file $AK_PE%/lib/models/__init__.py.
  4. Install Timm==0.4.9 and einops by python -m pip install timm==0.4.9 einops

Testing

Change current diectory to $AK_PE$/code/hrnet, run python tools/train.py --cfg experiments/mpii/vhrbirdpose/w32_256x256_adam_lr1e-3_ak_vhr_b.yaml.

Pretrained

The pretrained weight can be download from Google Drive | Baidu Netdisk (password=xxpa)

Citing

@Article{
    he2023vhrbirdpose,
    AUTHOR = {He, Runang and Wang, Xiaomin and Chen, Huazhen and Liu, Chang},
    TITLE = {VHR-BirdPose: Vision Transformer-Based HRNet for Bird Pose Estimation with Attention Mechanism},
    JOURNAL = {Electronics},
    VOLUME = {12},
    YEAR = {2023},
    NUMBER = {17},
    ARTICLE-NUMBER = {3643},
}

About

Pytorch implements of VHR-BirdPose

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages