This is a MindSpore Ascend implementation of the PTCR proposed in Pyramidal Transformer with Conv-Patchify for Person Re-identification.
- Python 3.8
- MindSpore 2.0.0 (Ascend)
- mindcv
- Organize datasets as below
├──"DATASETS.ROOT_DIR" in /src/PTCR_MindSpore.yaml
├──market1501
├──Market-1501
├──bounding_box_train
├──query
├──bounding_box_test
├──dukemtmc-reid
├──DukeMTMC-reID
├──bounding_box_train
├──query
├──bounding_box_test
├──cuhk03
├──cuhk03_release
├──cuhk-03.mat
├──cuhk03_new_protocol_config_labeled.mat
├──cuhk03_new_protocol_config_detected.mat
├──msmt17
├──MSMT17_V1
├──train
├──test
├──list_val.txt
├──list_train.txt
├──list_query.txt
├──list_query.txt
- Set your own "OUTPUT_DIR " in /src/PTCR_MindSpore.yaml
- Set your own "DATASETS.NAMES " in /src/PTCR_MindSpore.yaml:{market1501、dukemtmcreid、cuhk03、msmt17}
- Train
python train.py
- Test
python test.py
- Checkpoint
- you can download the pretrained weight for train from Google Drive
- you can download the finetuned weight for evaluation from Google Drive