Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update(extensions): add support for IDM changes #33

Merged
merged 8 commits into from
Dec 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 45 additions & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,51 @@ jobs:
working-directory: ./autotest
shell: bash -l {0}
run: pytest -v -n auto -m "not mf6"


autotest_preidm_extensions:
name: modflowapi pre-idm extensions autotests
needs: lint
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest, windows-latest ]
python-version: [ 3.8, 3.9, "3.10", "3.11" ]
defaults:
run:
shell: bash

steps:
# check out repo
- name: Checkout repo
uses: actions/checkout@v3

- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: pyproject.toml

- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install git+https://[email protected]/Deltares/xmipy@develop
pip install git+https://[email protected]/MODFLOW-USGS/modflow-devtools@develop
pip install .[test]

- name: Install modflow executables
uses: modflowpy/install-modflow-action@v1
with:
path: ${{ github.workspace }}/autotest
repo: executables
tag: "14.0"

- name: Run autotests
working-directory: ./autotest
shell: bash -l {0}
run: pytest -v -n auto -m "not mf6"

autotest_mf6_examples:
name: modflowapi mf6 examples autotests
needs: lint
Expand Down
5 changes: 3 additions & 2 deletions autotest/test_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
AdvancedPackage,
ArrayPackage,
ListPackage,
pkgvars
)

data_pth = Path("../examples/data")
Expand Down Expand Up @@ -120,10 +121,10 @@ def callback(sim, step):

factor = ((1 + sim.kstp) / sim.nstp) * 0.5
spd = sim.test_model.wel.stress_period_data.values
sim.test_model.wel.stress_period_data["flux"] *= factor
sim.test_model.wel.stress_period_data["q"] *= factor

spd2 = sim.test_model.wel.stress_period_data.values
if not np.allclose((spd["flux"] * factor), spd2["flux"]):
if not np.allclose((spd["q"] * factor), spd2["q"]):
raise AssertionError("Pointer not being set properly")

if sim.kper >= 3 and sim.kstp == 0:
Expand Down
2 changes: 1 addition & 1 deletion examples/data/disu_model/flow.ic
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ end options

BEGIN GRIDDATA
strt
INTERNAL FACTOR 1 IPRN
INTERNAL FACTOR 1 IPRN 3
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
Expand Down
2 changes: 1 addition & 1 deletion examples/data/two_models/model1.ic
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ end options

BEGIN GRIDDATA
strt
INTERNAL FACTOR 1.0 IPRN
INTERNAL FACTOR 1.0 IPRN 3
1.0 1.0 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 0.0
Expand Down
33 changes: 4 additions & 29 deletions examples/notebooks/Head_Monitor_Example.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "4526a124",
"metadata": {},
"outputs": [],
Expand All @@ -39,7 +39,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "cdd38b59",
"metadata": {},
"outputs": [],
Expand Down Expand Up @@ -186,35 +186,10 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "f2902aff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Solving: Stress Period 12; Timestep 31\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAHWCAYAAAAVVNJFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoOklEQVR4nO3df7Bdd3nf+/fnHMmSZfmHhGMfXdsEQ1WCTYIhGgcMcQEbLGgGQ6fMODMhVkND/jAttJlp7XamtMO442Zo087cCzNKSOV7k0JdkhQPN9fYiBBKCLgyNmDZGAvbGGHJAmMb/5IsnfPcP/ZSOBhJZ1s+Z/3Y5/2a2bP3XnvttZ/vPnvv5zzf9V3flapCkiQtbKrrACRJGgqTpiRJYzJpSpI0JpOmJEljMmlKkjQmk6YkSWMyaUqSJl6SDyS5M8nOJB9slv3bJN9PckdzeftC21mx5JFKktShJK8Efhu4EHgWuCnJ/9s8/PtV9ZFxt2XSlCRNulcAX6mqpwGS/BXwruPZkN2zkqRJdydwcZIXJVkDvB04p3ns/Um+keSPkqxbaEPpwzR6a9asqTVr1nQdBgArV64E4ODBgx1HMrJy5UqSMDubrkNhenr0WelDLGA8C+lTPH2KBUbxVFWvvufQj9+dlStXsnfv3h9W1c8txfYve9NJ9ciPZhd9u7d948BOYP+8RVurauvhO0neC1wFPAncBTwDXAf8ECjgw8CGqvqtY71OL7pn16xZwyOPPNJ1GABs2bIFgG3btnUax2FbtmzhtHXn8vVvntB1KLzqF58F6EUsYDwL6VM8fYoFRvE89uj9vfqeQz9+d7Zs2cK2bdu+u1Tbf+RHs9z62Rcv+nanN9y7v6o2He3xqvo48HGAJP8e2F1VDx9+PMkfAJ9Z6HV6kTQlSctDAXPMtf66Sc6oqn1JXgz8A+B1STZU1Z5mlXcx6sY9JpOmJKlFxWy1nzSBP03yIuAgcFVVPZrk/0lyAaNc/gDwOwttxKQpSZp4VfWrR1j2nue7HZOmJKk1o+7Z7gegHi8POZEkaUxWmpKkVnUxEGixmDQlSa0pitkezA9wvOyelSRpTFaakqRWORBIkqRlwEpTktSaAmatNCVJmnxWmpKkVg15n6ZJU5LUmgIPOZEkaTmw0pQktWq48wFZaUqSNDYrTUlSa4oa9CEnJk1JUnsKZoebM8frnk1yWpJPJflWkruTvC7J+iS3JLm3uV43b/1rkuxKck+Sy5YufEmS2jPuPs3/AtxUVb8AvAq4G7ga2F5VG4HtzX2SnAdcAZwPbAY+mmR6sQOXJA3P6CTUi39py4JJM8kpwMXAxwGq6tmqegy4HLi+We164J3N7cuBT1bVgaq6H9gFXLi4YUuS1L5x9mm+FPgB8F+TvAq4DfgAcGZV7QGoqj1JzmjWPwv4yrzn726WSZKWvTBLug7iuI3TPbsCeA3wsap6NfAUTVfsURzp3fiZ3b5J3pdkR5IdY0UqSRq8AuZq8S9tGSdp7gZ2V9VXm/ufYpREH06yAaC53jdv/XPmPf9s4KHnbrSqtlbVpqradLzBS5LUpgWTZlXtBb6X5OXNokuAu4AbgSubZVcCn25u3whckWRVknOBjcCtixq1JGmwZpsu2sW8tGXc4zT/CfAnSU4A7gP+EaOEe0OS9wIPAu8GqKqdSW5glFgPAVdV1eyiRy5JUsvGSppVdQdwpG7US46y/rXAtccfliRpEo1OQj3cgUDOCCRJatVcDTdpOmG7JEljstKUJLVm6N2zVpqSJI3JSlOS1JoizA64Xhtu5JIktcxKU5LUqiGPnjVpSpJa40AgSZKWCStNSVKLwmwNt14bbuSSJLXMSlOS1JoC5gZcr6WqxbN3HsWGDRtq8+bNXYcBwMzMDAB79+7tOJKRmZkZVqxYzZNPdb/jfO1Jo89KH2IB41lIn+LpUywwiufQof29+p5DP353ZmZmuO66625bqnMdv/yXVtfHbvz5Rd/uJed+e8lins9K8wimVq9m9cte1nUYAEzNzjJX8Oza7v8zm5saneHt4EndxwIwNz0LBQfX9CSew+9Pn+JJP/5ec9Oj9+bZk7uPBWAus0ytWM3qv/PSrkMBYOrQHHP793cdhsbQi6R58OBBtm3b1nUYAGzZsoXVL3sZn127putQALjsyaeZeha+8OxJXYfCG094ihR88cnuYwG4eO1TUPC/nuhHPL968lNAz+IJfPGp7uO5+KSnqCn4y4PdxwLwppVPMbey+OzJPfmeP/E0+/fu7cXv4JYtW5Z0+1UOBJIkaVnoRaUpSVo+5gY8uYFJU5LUmtGMQMPt5Bxu5JIktcxKU5LUIgcCSZK0LFhpSpJaM/QZgYYbuSRJLbPSlCS1ataTUEuStLAiHnIiSdJyYKUpSWrVnIecSJI0+aw0JUmtGfo0eiZNSVJrigx69Oxw070kSS2z0pQktcoZgSRJWgasNCVJrali0Gc5MWlKkloU5nAgkCRJE89KU5LUmmLY3bPDjVySpJZZaUqSWjXkGYGGG7kkSS2z0pQktaYIcwOeRs+kKUlqld2zkiQtA1aakqTWFJ6EWpKkZcFKU5LUojA74Gn0TJqSpNbYPStJ0jJhpSlJatWQu2etNCVJGpOVpiSpNVUZ9D5Nk6YkqVWeGkySpGXApClJak0Bc2TRLwtJ8oEkdybZmeSDzbL1SW5Jcm9zvW6h7Zg0JUkTLckrgd8GLgReBfxako3A1cD2qtoIbG/uH5P7NCVJLUoX+zRfAXylqp4GSPJXwLuAy4E3NutcD3wB+JfH2lAvkubKlSvZsmVL12EAMDMzw9TsLJc9+XTXoQCwfnYWpuCNJzzVdSicNjULwMVru48F4NTpWSj41ZN7FA89iydw8Undx3P4vXnTyu5jATgts3AILnuiJ9/zQ3PMzcz04ndwZmam6xCWwp3AtUleBDwDvB3YAZxZVXsAqmpPkjMW2lAvkiZTYfV5L+k6CgCm9kMV1Iq5rkMBoOYgwNyq6joUODS6ml3VbRh/axYIzPbjUwzNR6Z38fTh7zULFZhd0YPPMVDNZ7n6Es8sTK1ZzYk9+B2c2r+02x9No7ckkxucnmTHvPtbq2orQFXdneQ/ALcATwJf529/0Z6fXny9ZwO3/Px012EA8JbvzlKz4aaZPvzSwOa9B8hsuOnUNV2HwubHn4YKnz2p+1gALnvqaSi4+cR+xPPWZ0ZVS6/iCb34e1321NPUVHHTaSd2HQoAmx97BqaLmzb05Hu+5wBTU8Xnzu1+mMml9y99wbBEJ6H+YVVtOtqDVfVx4OMASf49sBt4OMmGpsrcAOxb6EXGijzJA0m+meSOw5n8WKOOklyTZFeSe5JcNs5rSJK0VA53vSZ5MfAPgE8ANwJXNqtcCXx6oe08n0rzTVX1w3n3D486ui7J1c39f5nkPOAK4Hzg/wA+l+TvVtXs83gtSdIEKrJU3bML+dNmn+ZB4KqqejTJdcANSd4LPAi8e6GNvJDu2aONOroc+GRVHQDuT7KL0TDfv3kBryVJ0nGrql89wrJHgEuez3bG7Vgu4OYktyV5X7Psp0YdAYdHHZ0FfG/ec3c3yyRJYo6pRb+0ZdxK8/VV9VDTJ3xLkm8dY90j1d0/M0StSb7vAzh95swxw5AkDVkVzHbTPbsoxkrPVfVQc70P+HNG3a0PN6ONeM6oo93AOfOefjbw0BG2ubWqNlXVpkx3P2JMkqSFLJitkpyU5OTDt4G3MjpQ9Gijjm4ErkiyKsm5wEbg1sUOXJI0THOVRb+0ZZzu2TOBP09yeP3/VlU3JfnfHGHUUVXtTHIDcBejg0evcuSsJGkSLJg0q+o+RhPcPnf5UUcdVdW1wLUvODpJ0kQZHXIy3F1yvZgRSJK0fMyOcSqvvhpuupckqWVWmpKk1izhhO2tsNKUJGlMVpqSpBYNeyDQcCOXJKllVpqSpFbNDXj0rElTktSaZTH3rCRJstKUJLXMgUCSJC0DVpqSpNaM5p4d7j5Nk6YkqVVDHj1r96wkSWOy0pQktca5ZyVJWiasNCVJrRryIScmTUlSe2rYo2eHm+4lSWqZlaYkqTWFh5xIkrQsWGlKklrlPk1JkpYBK01JUmuGPrmBSVOS1KohJ027ZyVJGpOVpiSpNUM/NZiVpiRJY7LSlCS1asiTG5g0JUntKQcCSZK0LPSi0pwueMt3Z7sOA4D1+6Gq2Lz3QNehALD+2SJVbH786a5DYf2hOQAue6r7WADWz44+M299pifxzPUznj78vdbPzlJzsPmxZ7oOBWg+y4dg856efM8PFAlcev9c16Gwbv/Sbt/jNBdJevQeJpDp6joMYN77sqIH8cyOPvC1ovsvNkA1YdTKHrw3QD3bXPcunu7/XjXXfK/68DkG0vyPPjXVk3jy09fqr14kzdkp+PxL+/FpefN9RRXc8vPTXYcCNBX4XLjp7JVdh8Lm3Qepgps2rOo6FOBwlRBuOrMn8Tw8qlr+vzP6Ec/b9h2AVC/+Xpv3HCCBz57di58cLtt9iKS45SU9+Z4/MEsCn39Z15HAm7+z9K9hpSlJ0hg8TlOSpGXCSlOS1Kqy0pQkafJZaUqSWjXkGYGsNCVJGpOVpiSpNTXwafRMmpKkVjkQSJKkZcBKU5LUIic3kCRpWbDSlCS1asj7NE2akqTWDP3UYHbPSpI0JitNSVJ7anSs5lBZaUqSNCYrTUlSq4Y896xJU5LUmmLYo2ftnpUkaUxWmpKkFjkjkCRJy4KVpiSpVR5yIknSMmClKUlq1ZBHz5o0JUmtqRp20rR7VpKkMY2dNJNMJ7k9yWea++uT3JLk3uZ63bx1r0myK8k9SS5bisAlScM0V1n0S1ueT6X5AeDuefevBrZX1UZge3OfJOcBVwDnA5uBjyaZXpxwJUnqzlhJM8nZwN8H/nDe4suB65vb1wPvnLf8k1V1oKruB3YBFy5KtJKkwata/Etbxq00/zPwL4C5ecvOrKo9AM31Gc3ys4DvzVtvd7PspyR5X5IdSXbUobnnPixJmlBVWfRLWxZMmkl+DdhXVbeNuc0jRf8z/wdU1daq2lRVm7LC8UiSpP4b55CT1wPvSPJ2YDVwSpI/Bh5OsqGq9iTZAOxr1t8NnDPv+WcDDy1m0JKkYSrarQwX24IlXlVdU1VnV9VLGA3w+XxV/QZwI3Bls9qVwKeb2zcCVyRZleRcYCNw66JHLklSy17I5AbXATckeS/wIPBugKrameQG4C7gEHBVVc2+4EglSRNhwFPPPr+kWVVfAL7Q3H4EuOQo610LXPsCY5MkTRpnBJIkaXlw7llJUrsG3D9rpSlJ0phMmpKkVnUxuUGSf5ZkZ5I7k3wiyeok/zbJ95Pc0VzevtB27J6VJLWqzWnvAJKcBfxT4LyqeqY5wuOK5uHfr6qPjLstK01J0nKwAjgxyQpgDcc56U4vKs3pOXjzff3YM7zumdH1W77bj0NL1+8Hqti8+2DXobD+QFHA5j0Hug4FgPXPFlBsfrgv8YzmUH7bvn7F04e/1/oDRQKX7T7UdSjAKB6AtzzQj+/5uv2j6zd/p9s4AE57Zmm3X7R/yElVfT/JRxjNKfAMcHNV3ZzkIuD9SX4T2AH8blU9eqxt9SJpAqRnw6mm+nQYUUKme/D+ZDSx8FQfYgHS/I2mpvsx4X9/4+n+7/W3sUx1H8tP1N/G1Rd9i2dgTk+yY979rVW1FaA53/PlwLnAY8D/SPIbwMeADzPK5R8G/iPwW8d6kV4kzdkp+MLGrqMYeeO9o+u//DvdxnHYm3aN/pqff2n336Y331dQ8LmX9qNX/9L7Rsnplpf043Sth6uWz53bk/fn/jkIbO/BZ+eS+4oAn39Z15GMHK7o+vS7k8Bfbez+n4q/d+8Sf14KWJpK84dVtekoj10K3F9VPwBI8mfARVX1x4dXSPIHwGcWepF+fLslSVo6DwKvTbImSRjNZnd3c7KRw94F3LnQhnpRaUqSlo+2R89W1VeTfAr4GqM50W8HtgJ/mOQCRvXvA8DvLLQtk6YkqV0d9EJX1YeADz1n8Xue73bsnpUkaUxWmpKkFk34SaglSdKIlaYkqV3dH1lz3EyakqT2eBJqSZKWBytNSVK7Btw9a6UpSdKYrDQlSS0b7j5Nk6YkqV12z0qSNPmsNCVJ7bLSlCRp8llpSpLas3QnoW6FlaYkSWOy0pQktartk1AvJpOmJKldA06ads9KkjQmK01JUrscCCRJ0uSz0pQktSoD3qdp0pQktadwIJAkScuBlaYkqUVxIJAkScuBlaYkqV0D3qdp0pQktWvASdPuWUmSxmSlKUlql5WmJEmTz0pTktQeT0ItSdLyYKUpSWqVc89KkjSuASdNu2clSRqTSVOSpDGZNCVJGlMv9mlOz8Eb7+06ipHTnhldv2lXt3EcdjieN9/X/U6AdU0sl943120gjXX7R9dveWC220Aah+O59P5+vT+X9Oiz8+bvdBvHYYe/V3373fl793Z/KMapTy/9azgQaBGk+8/KT+lTPEkxPdX9pywJVTDVs/4J4zm6hN58dgCmehAL9DOe6kco7RjwcZq9SJqzU/ClX+hHtfCGb00D/YonKf66B/G8/lvTVKVX7w3AF/9uPyq7i789ypZ9en+S4suvONR1KFx09+inpg+xwE/i6cP3Cvr13Tr8vdKR9SJpSpKWicJDTiRJWg6sNCVJ7RpwpWnSlCS1asijZ+2elSRpTFaakqR2WWlKkjT5FkyaSVYnuTXJ15PsTPLvmuXrk9yS5N7met2851yTZFeSe5JctpQNkCQNTC3BpSXjVJoHgDdX1auAC4DNSV4LXA1sr6qNwPbmPknOA64Azgc2Ax9N4tGykqTBWzBp1siTzd2VzaWAy4Hrm+XXA+9sbl8OfLKqDlTV/cAu4MLFDFqSNEyppbm0Zax9mkmmk9wB7ANuqaqvAmdW1R6A5vqMZvWzgO/Ne/ruZpkkSaO5Zxf70pKxkmZVzVbVBcDZwIVJXnmM1Y8U/c/8H5DkfUl2JNlRh/oxd6gkScfyvEbPVtVjwBcY7at8OMkGgOZ6X7PabuCceU87G3joCNvaWlWbqmpTVjiIV5KWjUkeCJTk55Kc1tw+EbgU+BZwI3Bls9qVwKeb2zcCVyRZleRcYCNw6yLHLUlS68aZ3GADcH0zAnYKuKGqPpPkb4AbkrwXeBB4N0BV7UxyA3AXcAi4qqq6P9+NJKkXhjyN3oJJs6q+Abz6CMsfAS45ynOuBa59wdFJkibPgJOmOxMlSRqTc89KktrT8nGVi81KU5KkMVlpSpLaNeBK06QpSWrXgJOm3bOSJI3JSlOS1CoHAkmStAyYNCVJGpNJU5KkMblPU5LUrgHv0zRpSpLa44xAkiQtD1aakqR2WWlKkjT5rDQlSe0acKVp0pQktSY4EEiSpGXBSlOS1C4rTUmSJp+VpiSpPQOf3MCkKUlq14CTpt2zkqSJl+SfJdmZ5M4kn0iyOsn6JLckube5XrfQdkyakqR21RJcjiHJWcA/BTZV1SuBaeAK4Gpge1VtBLY394/JpClJWg5WACcmWQGsAR4CLgeubx6/HnjnOBvp3PQcvOFb012HAcCpT4+u+xRPEl7fg3hOfTpU9eu9Abj42/3436+vn52L7u7+a37q0wHoRSzwk3j68L2Cfn23Dn+Ol1LbA4Gq6vtJPgI8CDwD3FxVNyc5s6r2NOvsSXLGQtvqxycYmOrJcKpk9GWanprrOJKRZJQQptOHeKaZCpwwPdt1IABMZRqonsXTt/cHVk51H0+YBsKKvnyvmKboz+8OhKQf8Rz+DRyg05PsmHd/a1VtBWj2VV4OnAs8BvyPJL9xPC/Si6Q5NwV/84qDXYcBwOvuXklS3Hr+s12HAsCFO08gFHf80jNdh8IF3ziRqcA3L3iy61AA+MU71gLFzlf3I57zb18LYDxHcP7taynCHb/UQhkzhgu+sYa5CjteeaDrUADYdOcqqsJXzuv+d/C1d61c+hdZmv8NflhVm47y2KXA/VX1A4AkfwZcBDycZENTZW4A9i30Iv3o15IkLQ9LMQho4ST8IPDaJGsyKqUvAe4GbgSubNa5Evj0QhvqRaUpSdJSqaqvJvkU8DXgEHA7sBVYC9yQ5L2MEuu7F9qWSVOS1Koudt1W1YeADz1n8QFGVefY7J6VJGlMVpqSpHZ1P0j4uJk0JUmt6sGRNcfN7llJksZkpSlJapeVpiRJk89KU5LUnvEmI+gtk6YkqTVpLkNl96wkSWOy0pQktWvA3bNWmpIkjclKU5LUKic3kCRpGbDSlCS1a8CVpklTktSuASdNu2clSRqTlaYkqT3lQCBJkpYFK01JUrsGXGmaNCVJrbJ7VpKkZcBKU5LULitNSZImn5WmJKlVQ96nadKUJLWnsHtWkqTlwEpTktQuK01JkibfgkkzyTlJ/jLJ3Ul2JvlAs3x9kluS3Ntcr5v3nGuS7EpyT5LLlrIBkqThCKOBQIt9acs4leYh4Her6hXAa4GrkpwHXA1sr6qNwPbmPs1jVwDnA5uBjyaZXorgJUlq04JJs6r2VNXXmttPAHcDZwGXA9c3q10PvLO5fTnwyao6UFX3A7uACxc5bknSUNUSXFryvAYCJXkJ8Grgq8CZVbUHRok1yRnNamcBX5n3tN3NMkmSSA13JNDYA4GSrAX+FPhgVf34WKseYdnPvENJ3pdkR5Idc4fmxg1DkqTOjJU0k6xklDD/pKr+rFn8cJINzeMbgH3N8t3AOfOefjbw0HO3WVVbq2pTVW2aWuEgXklaFpaia7ZPA4GSBPg4cHdV/ad5D90IXNncvhL49LzlVyRZleRcYCNw6+KFLElSN8bZp/l64D3AN5Pc0Sz7V8B1wA1J3gs8CLwboKp2JrkBuIvRyNurqmp2sQOXJA3TRM89W1Vf4sj7KQEuOcpzrgWufQFxSZIm1SQnzTZMzcHr7l7ZdRgAnPJ0gHDhzhO6DgWAk58a9aBf8I0TO44E1j41TYBfvGNt16EAcNKT00Bx/u19igfjOYJRLOGCb6zpOhQA1j45TQGb7lzVdSjAT77nr72r+9/B0W+gjqYXSRMgvanXQyhWTPVjRG8ICaxecajrUJjKFKE4ccWzXYcCwFRGP3hrVhzsOJKR0fsDJ/Xk/ZnOaop+vD9TmaKAVdPdf44BkikoWNmj73mRnvwOLn3S7EUzj1MvkubcFOx45YGuwwBG/3mumJrjW68+1lE17fmF209h5dQse35l38IrL7ENXz2D6czx6EXf7zoUANZ9+SwCPPH6B7sOBYCT//rFhOLJN/QjnrVfejFFePyi3V2HwqlfPptDNdWLzzGMPsuH5qa55zWPdx0KAC//2qkcnJvitl/c33Uo/PI3V3cdQq/1ImlKkpYRK01JksbQ8gTri81ZBSRJGpOVpiSpXVaakiRNPitNSVJrDp+EeqhMmpKkdi2HU4NJkrTcWWlKklo15O5ZK01JksZkpSlJak/LJ41ebFaakiSNyUpTktSq9OPkMsfFpClJapfds5IkTT4rTUlSqzzkRJKkZcBKU5LUnmLQ0+iZNCVJrbJ7VpKkZcBKU5LULitNSZImn5WmJKk1noRakqRxVQ169Kzds5IkjclKU5LUqiF3z1ppSpI0JitNSVK7rDQlSZp8VpqSpFYNeZ+mSVOS1J4C5oabNe2elSRpTFaakqR2DbfQtNKUJGlcVpqSpFY5EEiSpHE596wkSZPPSlOS1Cq7ZyVJ6qkkLwf++7xFLwX+DXAa8NvAD5rl/6qq/uJY2zJpSpLaU7R+yElV3QNcAJBkGvg+8OfAPwJ+v6o+Mu62TJqSpNYESLcDgS4BvlNV303yvJ/ci6Q5NQeb7lzVdRgAnPzUFCH8wu2ndB0KAGuemCaZZsNXz+g6FE748QmEYt2Xz+o6FABWPD76zJz81y/uOJKR6cdXEWDtl/oSz2oKOPXLZ3cdCtOPr2KK9OJzDKPP8sqCl3/t1K5DAeDEJ6ZZTfjlb67uOhROfmrix4deAXxi3v33J/lNYAfwu1X16LGe3IukyVzx4298r+soAFgzM8MJa1eyaupQ16EAMJUppjPH6ulnug6FQ5keJYXpp7sOBYD9WQkUJ694qutQAHgmo6/T2hX9eH+eyUogvfh77c9KCnrxOYbRZ3mWKVZNH+w6FGD0PX/2yWf58Xf2dh0Ka2Zmlv5F5pZkq6cn2THv/taq2jp/hSQnAO8ArmkWfQz4MKMO4w8D/xH4rWO9SC+S5sGDB9m2bVvXYQCwZcsWNrzmTH500fe7DgWA9V8+i1XT+3nRJbd3HQqPbH81KzPLS9765a5DAeCBmy8iKTa+9UtdhwLAvTe/AaBX8VSlF3+vB26+iIM13YvPMYw+ywfmVvFoT77n6758Fnt37evF7+CWLVu6DuF4/bCqNi2wztuAr1XVwwCHrwGS/AHwmYVepBdJU5K0fHS4T/PXmdc1m2RDVe1p7r4LuHOhDZg0JUkTL8ka4C3A78xb/HtJLmDUPfvAcx47IpOmJKk9HRxyAlBVTwMves6y9zzf7Zg0JUktKueelSRpObDSlCS1ashzz1ppSpI0JitNSVK7BrxP06QpSWpPQZZmRqBW2D0rSdKYrDQlSe0acPeslaYkSWOy0pQktWu4hebClWaSP0qyL8md85atT3JLknub63XzHrsmya4k9yS5bKkClyQNU6oW/dKWcbpntwGbn7PsamB7VW0Etjf3SXIeoxN8nt8856NJphctWkmSOrRg0qyqLwI/es7iy4Hrm9vXA++ct/yTVXWgqu4HdgEXLk6okqSJULX4l5Yc70CgMw+fg6y5PqNZfhbwvXnr7W6W/Ywk70uy4zln2pYkqbcWe/RsjrDsiP8CVNXWqto0xpm2JUmTooC5Jbi05HiT5sNJNsDozNfAvmb5buCceeudDTx0/OFJktQfx5s0bwSubG5fCXx63vIrkqxKci6wEbj1hYUoSZoUYfFHzrY5enbB4zSTfAJ4I3B6kt3Ah4DrgBuSvBd4EHg3QFXtTHIDcBdwCLiqqmaXKHZJ0hANeEagBZNmVf36UR665CjrXwtc+0KCkiSpj5wRSJLUrgFXms49K0nSmKw0JUntOXzIyUCZNCVJrWpztOtis3tWkqQxWWlKktplpSlJ0uSz0pQktajds5IsNpOmJKk9xaCTpt2zkiSNyUpTktSuAR+naaUpSdKYrDQlSa1ycgNJkpYBK01JUrsGXGmaNCVJ7SlgbrhJ0+5ZSZLGZKUpSWrRsGcESvUg+A0bNtTmzZu7DgOAmZkZTli7koOnPNt1KACs/PEJTGeOFac92XUoHHpsLQFWr3u861AA2P/oqUBx4vp+xPPMj04F6Fk86cXfa/+jp1LQi88xjD7LszXFoVMPdB0KACseX8WzTx5k7969XYfCzMwM11133W1VtWkptn/q6pm66MVXLvp2b7r395Ys5vmsNI/g2ScPsnfXw12HAYw+wKeeMsXMiu6T+N6M/sH6uenZjiMZORzP6VP9OFJ6b0bX/YqnevH3Ovy36sPnGEbxPP7EQfbu2td1KMDoe76s9KBYO169SJoHDx5k27ZtXYcBwJYtWwB6Fc/Lzz2R33zH57oOhf/7xksBehELGM9C+hRPn2KBUTz3fPuZXn3PoR+/O4djWVIDTpoOBJIkaUy9qDQlScuEh5xIkrQ8WGlKklpUUP0YLHc8TJqSpHY5EEiSpMlnpSlJao8DgSRJWh6sNCVJ7XKfpiRJk89KU5LUrgFXmiZNSVKLhn1qMLtnJUkak5WmJKk9BcwNd0YgK01JksZkpSlJateA92maNCVJ7Rpw0rR7VpKkMVlpSpJaVM49K0nScmClKUlqT0F5EmpJksZk96wkSZPPSlOS1C4POZEkafJZaUqS2lPl3LOSJC0HVpqSpHYNeJ+mSVOS1Kqye1aSpMlnpSlJalENunvWSlOSpDFZaUqS2lMMeho9k6YkqV0DnrDd7llJksZkpSlJak0BNeDuWStNSZLGZKUpSWpPlfs0jyTJ5iT3JNmV5Oqleh1J0rDUXC365ViSvDzJHfMuP07ywSTrk9yS5N7met1CsS9J0kwyDfxfwNuA84BfT3LeUryWJEnHUlX3VNUFVXUB8MvA08CfA1cD26tqI7C9uX9MS1VpXgjsqqr7qupZ4JPA5Uv0WpKkIam5xb+M7xLgO1X1XUZ56fpm+fXAOxd6cmoJpjNK8g+BzVX1j5v77wF+paref6T1N2zYUJs3b170OI7HzMwMAHv37u04kpGZmRlOPWWKmRc92nUo7H1k1HPRh1jAeBbSp3j6FAuM4nn8x3O9+p5DP353ZmZmuO66626rqk1Lsf1Tsr5+JZcs+nY/V58aK+YkfwR8rar+zySPVdVp8x57tKqO2UW7VAOBcoRlP5Wdk7wPeF9z98C2bdvuXKJY+uB04IddB7HEJr2Ntm/YbN/z8/OLuK2f8gSPfvZz9anTl2DTq5PsmHd/a1Vtnb9CkhOAdwDXHO+LLFXS3A2cM+/+2cBD81doGrMVIMmOpfqvpg8mvX0w+W20fcNm+/qjqrrsVnwboyrz4eb+w0k2VNWeJBuAfQttYKn2af5vYGOSc5vMfgVw4xK9liRJ4/h14BPz7t8IXNncvhL49EIbWJKkWVWHgPcDnwXuBm6oqp1L8VqSJC0kyRrgLcCfzVt8HfCWJPc2j1230HaWbHKDqvoL4C/GXH3rwqsM2qS3Dya/jbZv2GzfMldVTwMves6yRxiNph3bkoyelSRpEjn3rCRJY+o8aU7CdHtJ/ijJviR3zlt21OmZklzTtPeeJJd1E/X4kpyT5C+T3J1kZ5IPNMsnoo1JVie5NcnXm/b9u2b5RLTvsCTTSW5P8pnm/sS0L8kDSb7ZTJG2o1k2Se07Lcmnknyr+R6+bpLaNyhV1dkFmAa+A7wUOAH4OnBelzEdZzsuBl4D3Dlv2e8BVze3rwb+Q3P7vKadq4Bzm/ZPd92GBdq3AXhNc/tk4NtNOyaijYyOK17b3F4JfBV47aS0b147/znw34DPTOBn9AHg9Ocsm6T2XQ/84+b2CcBpk9S+IV26rjQnYrq9qvoi8KPnLD7a9EyXA5+sqgNVdT+wi9H70FtVtaeqvtbcfoLRiOizmJA21siTzd2VzaWYkPYBJDkb+PvAH85bPDHtO4qJaF+SUxj9Y/5xgKp6tqoeY0LaNzRdJ82zgO/Nu7+7WTYJzqyqPTBKOsAZzfJBtznJS4BXM6rGJqaNTdflHYwObr6lqiaqfcB/Bv4FMH+SzklqXwE3J7mtmW0MJqd9LwV+APzXpnv9D5OcxOS0b1C6TpoLTrc3gQbb5iRrgT8FPlhVPz7WqkdY1us2VtVsjc6AcDZwYZJXHmP1QbUvya8B+6rqtnGfcoRlvW1f4/VV9RpGM75cleTiY6w7tPatYLT752NV9WrgKY59No6htW9Quk6aC063N2APN9My8ZzpmQbZ5iQrGSXMP6mqwwcHT1QbAZpury8Am5mc9r0eeEeSBxjtAnlzkj9mctpHVT3UXO9jdMqnC5mc9u0Gdje9HwCfYpREJ6V9g9J10pzk6faONj3TjcAVSVYlORfYCNzaQXxjSxJG+1Purqr/NO+hiWhjkp9Lclpz+0TgUuBbTEj7quqaqjq7ql7C6Dv2+ar6DSakfUlOSnLy4dvAW4E7mZD2VdVe4HtJXt4sugS4iwlp3+B0PRIJeDuj0ZjfAf511/EcZxs+AewBDjL6L++9jGae2A7c21yvn7f+v27aew/wtq7jH6N9b2DUvfMN4I7m8vZJaSPwS8DtTfvuBP5Ns3wi2vectr6Rn4yenYj2Mdrn9/XmsvPw78iktK+J9wJgR/MZ/Z/Auklq35AuzggkSdKYuu6elSRpMEyakiSNyaQpSdKYTJqSJI3JpClJ0phMmpIkjcmkKUnSmEyakiSN6f8HqiIifuNO1XAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 576x576 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"NORMAL TERMINATION OF SIMULATION\n"
]
}
],
"outputs": [],
"source": [
"hdmon = StructuredHeadMonitor(layer=0, vmin=70, vmax=95)\n",
"dll = \"libmf6\"\n",
Expand Down
Loading