Skip to content

Full automatic pipelines to mine OR, TAAR, V2R and V1R genes from any vertebrate genome

Notifications You must be signed in to change notification settings

MaximePolicarpo/Vertebrate_Chemoreceptors_mining

Repository files navigation

Vertebrate_Chemoreceptors_mining

The main pipelines scripts are called OR_Finder.sh, TAAR_Finder.sh, V1R_Finder.sh, V2R_Finder.sh, T1R_Finder.sh, T2R_Finder.sh

1)Before running these pipelines, create a conda environment called "olfactory" and install seqkit, scikit-learn and tmhmm :

  • conda create -n olfactory
  • conda activate olfactory
  • conda install -c "bioconda/label/cf201901" seqkit
  • conda install -c anaconda scikit-learn
  • conda install -c dansondergaard tmhmm.py

2)You should also have the following programs installed on your machine :

  • R v4.2.0
  • BLAST v2.12.0
  • EMBOSS v6.2.0
  • SAMtools v1.15
  • MAFFT v7.467
  • IQ-TREE v2.0
  • Python v3.9.5
  • FASTX-Toolkit v0.0.14

R packages needed :

  • data.table
  • dplyr
  • tidyr
  • plyranges
  • GenomicRanges
  • ape
  • phytools
  • stringr

Python packages needed :

  • Biopython

3a)If you are under a slurm environment, make sure that you have a qos named 6hours. Otherwise, replace the qos name in the lines beginning with "sbatch" in the main .sh scripts [OR_Finder.sh, TAAR_Finder.sh, V1R_Finder.sh, V2R_Finder.sh, T1R_Finder.sh, T2R_Finder.sh] (for example line 222 in TAAR_Finder.sh). 6hours is the optimal running time for these sbatch commands.

3b)Again, if you are not under a slurm environment, then replace lines beginning by sbatch with nohup

For example in TAAR_Finder.sh, replace

  • sbatch -W -c 4 --qos=6hours --wrap="$scripts_location/exonerate-2.2.0-x86_64/bin/exonerate -E True --showtargetgff TRUE --model protein2genome --ryo '%tcs' --minintron 50 --maxintron $maximum_intron_length Splitted_db/$file_name TAAR_best_hits_regions.fa > Exonerate_raw_results_folder/$file_name.exo.rslt ; sleep 10" &

by

  • nohup $scripts_location/exonerate-2.2.0-x86_64/bin/exonerate -E True --showtargetgff TRUE --model protein2genome --ryo '%tcs' --minintron 50 --maxintron $maximum_intron_length Splitted_db/$file_name TAAR_best_hits_regions.fa > Exonerate_raw_results_folder/$file_name.exo.rslt &

4)OR genes

If you want to extract OR genes from a genome :

sbatch OR_Finder.sh $genome_file_name $OR_database $GPCR_database $Script_folders_location $intron_sizes $thread_number $phobius_tmhmm $max_nb_exons

  • $genome_file_name : Your genome fasta file
  • $OR_database : Database containing protein sequences of known OR genes. You can either create one of your choice or use the one provided here (Database_OR/Database_Vertebrate_OR_cdhit_80.prot)
  • $GPCR_database : Blast database of non-chemoreceptors GPCR proteins + chemoreceptors proteins. One should use the database provided (GPCR_plus_Chemoreceptors_vertebrates.prot)
  • $Script_folders_location : Full path the the folder containing accessory OR_finder scripts (Database_OR/Scripts_2022/)
  • $intron_sizes : Maximum intron size for multi-exon TAAR genes. (optimal : 25000)
  • $thread_number : Number of thread that will be used by IQ-TREE and BLAST
  • $phobius_tmhmm : Set to TRUE or FALSE. If TRUE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed into the same file as pseudogenes and truncated genes. If FALSE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed in the result file together with genes with a predicted 7tm domain.
  • $max_nb_exons : Maximum number of exons a OR gene should have. The opitmal is to set 2 for tetrapod OR genes, and 4 for ray-finned fishes.

5)TAAR genes

If you want to extract TAAR genes from a genome :

sbatch TAAR_Finder.sh $genome_file_name $TAAR_database $GPCR_database $Script_folders_location $intron_sizes $thread_number $Exon_mode $evalue $phobius_tmhmm

  • $genome_file_name : Your genome fasta file
  • $TAAR_database : Database containing protein sequences of known TAAR genes. You can either create one of your choice or use the one provided here (Database_TAAR/TAAR_plus_TAARL_database_reformat_cdhit_80.prot)
  • $GPCR_database : Blast database of non-chemoreceptors GPCR proteins + chemoreceptors proteins. One should use the database provided (GPCR_plus_Chemoreceptors_vertebrates.prot)
  • $Script_folders_location : Full path the the folder containing accessory TAAR_finder scripts (Database_TAAR/Scripts_2022/)
  • $intron_sizes : Maximum intron size for multi-exon TAAR genes. (optimal : 25000)
  • $thread_number : Number of thread that will be used by IQ-TREE and BLAST
  • $Exon_mode : if TRUE, then the pipeline will look for the presence of multiple exons TAAR genes. If FALSE, then only one exon genes will be retrieved but the pipeline will run much faster
  • $evalue : evalue for the initial tblastn of known TAAR genes against the genome. Optimal : 1e-5
  • $phobius_tmhmm : Set to TRUE or FALSE. If TRUE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed into the same file as pseudogenes and truncated genes. If FALSE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed in the result file together with genes with a predicted 7tm domain.

5)V1R genes

If you want to extract V1R genes from a genome :

sbatch V1R_Finder.sh $genome_file_name $V1R_database $GPCR_database $Script_folders_location $intron_sizes $thread_number $Exon_mode $evalue $phobius_tmhmm

  • $genome_file_name : Your genome fasta file
  • $V1R_database : Database containing protein sequences of known V1R genes. You can either create one of your choice or use the one provided here (Database_V1R/Database_2022_V1R_vertebrates_cdhit_80.prot)
  • $GPCR_database : Blast database of non-chemoreceptors GPCR proteins + chemoreceptors proteins. One should use the database provided (GPCR_plus_Chemoreceptors_vertebrates.prot)
  • $Script_folders_location : Full path the the folder containing accessory V1R_finder scripts (Database_V1R/Scripts_2022/)
  • $intron_sizes : Maximum intron size for multi-exon V1R genes. (optimal : 25000)
  • $thread_number : Number of thread that will be used by IQ-TREE and BLAST
  • $Exon_mode : if TRUE, then the pipeline will look for the presence of multiple exons V1R genes. If FALSE, then only one exon genes will be retrieved but the pipeline will run much faster. One MUST set this to TRUE for ray-finned genomes.
  • $evalue : evalue for the initial tblastn of known TAAR genes against the genome. Optimal : 1e-5
  • $phobius_tmhmm : Set to TRUE or FALSE. If TRUE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed into the same file as pseudogenes and truncated genes. If FALSE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed in the result file together with genes with a predicted 7tm domain.

6)V2R genes

If you want to extract V2R genes from a genome :

sbatch V2R_Finder.sh $genome_file_name $V2R_database $GPCR_database $Script_folders_location $intron_sizes $thread_number $phobius_tmhmm

  • $genome_file_name : Your genome fasta file
  • $V2R_database : Database containing protein sequences of known V2R genes. You can either create one of your choice or use the one provided here (Database_V2R/Database_2022_V2R_vertebrates_cdhit_80.prot)
  • $GPCR_database : Blast database of non-chemoreceptors GPCR proteins + chemoreceptors proteins. One should use the database provided (GPCR_plus_Chemoreceptors_vertebrates.prot)
  • $Script_folders_location : Full path the the folder containing accessory V2R_finder scripts (Database_V2R/Scripts_2022/)
  • $intron_sizes : Maximum intron size for V2R genes. (Set between 15,000 ad 40,000 depending on the species)
  • $thread_number : Number of thread that will be used by IQ-TREE and BLAST
  • $phobius_tmhmm : Set to TRUE or FALSE. If TRUE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed into the same file as pseudogenes and truncated genes. If FALSE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed in the result file together with genes with a predicted 7tm domain.

For V2R genes of lampreys, I recommend to add these three genes to the V2R database (Obtained in the study of Kowatschew and Korsching 2022). I did not include these sequences in the classic database as much more false positive regions were exctracted in the initial blast, greatly impacting the running time of the pipeline and possibly leading to false positive genes :

V2R-Receptor-Leth-V2R1 MEPLCLLAIGLILLHITPHIETRLFIESGGDVILGGLFPLHNSVINLPLEFNAVPTSADCVMLNERALTRLYTMLFTIEEINNRSDLLPNMKLGYRVIDSCTDVMKAVEASYEFSLFGSTQKSPLVVIGDAYSFLTIPAAYTLGLKHIPMISYSASAPSLSDKTRFPTFMRTIPSDTFQS KALAELVGHFGWTWIGILGSDDDYGRQGLGKFQSDAHEYGVCFDFQIWVPKKIAINDINSIVNVIHNSTVKVIIAFVIDAELEPIIKEMARRQIVGKTFIASESWISSPIIHKPQYADVLEGTIGFDMISADMNKLSDFLRNSKPTTDNPFMTELWQETFHCTPHPPMENASGLADAARL PACSGDESLGSVTSSFFNPSEMTVPYAVYLAVYAVAHALHELAACTTSTGVFAGGHCANLSDIQPWQVMRYLKKVDFKDNGYNIRFDANGDPVAYYILKQWQRKDDGNMKMVEVGSYTNLNNNTNSTNNGHLIINDELLFWIGKQLKAPDSLCVAACPEGSRKEYEAGQPSCCYRCVQCS DGEFSKTKDANNCVRCPPDSWSTGTHTDCFVKPVQYLKWDSVEGLILHIAAIVGLFLTFDVLFIFCKYRETPIVKASNFKISLMLLVCLFCNFLCIYVFVGIPKPWMCIARQPFFGVSFSSCLSCILVKTISMIIAFKPNQTRNDTFHRQMTRAEIPIVAVVIAIEVALCVVWYFLASPR VFRNENIKADTIFLQCDEGSPFNFAFIIAYLYVLALICLMLSFMVRKLPNNFNEGKFVMFSALTFFIVWISFIPAYILSNEHRVVVEIISIILSGYGILIFLFFHKCYIILLQPQKNTREHVDRQLRNYIEREEKIMLEELLLRPQSRSQLHDLRDLSHAPVYICVVRFILGGA

V2R-Receptor-Leth-V2R2 ISLYMRYLTWMYTMLYAIDEINERQDLLPDIRLGYDIYDSCTNVMKSLEAGVALMKATEDLTRPPLVGVIGDGNSKQTVVLAQMLGLHNVPLISYAASAPALGNKAEFPTFMRTIPGDSSQSKALAELVGHFRWTWIGTLGSDDEYGRQGLSHFENEVASMYKVCFSFRLWIPKNAQYDD ITKIVDTIADSNAMSIVVFAIDTDFEPVLKEVVRRNIVDRIWVASEGWITSPYLNKPEYAPTLEGTIGFDVAQGNVQDIMDYLRNPMRVAENPFGDEYLKEAFGCTLPTAGPNHSDTSTDTNNATSAGNFPSAAGMGIPFAVYLAVYTVAHALHDLLDCDTKRGADEKSSCANVSNIQPW QVIMLMKMHDLNFQQNNYSVKFFKNGDPLPHYVLKNWQRQKDGTLVIKNVGTYEYSKEGTNASALHFTSEPMWKNSSSTVPASMCSVPCIKGQRKEFGPGWSAQCCYKCVSCSDGSYSDKDDAINCTDCTPNEMSSENHTSCVPKPLEYLRWGSGEGITLVVLAMLGFCFTLAVTVIFVR YHDTPIVKASNRTLYFTLLFSLGCMFLGTLTFFGEPAPWQCFVQQPCFGISFSLCLSCTLVKAVEMVVAFKPSEVFTNKLKIIMKFEVVIVALLTSIEVVICVLWLAILQPQVTMQPSLKSINVECQKSSLFLIPILSYIYLLGLVCVVLAFLVRKVPKNFNEGKLVLLGMLTFFIVWIS FIPAYYVTPGKYMVAVEVISIILSGYGIIGFLFFRKCYIILWKPQNNTRWRVNNDQLCQRERDN

V2R-Receptor-Pema-V2R1 MYFRYVGNSHATQATPINTMQRYTGCIQKSREMEPLCLLAIGFILLHITPHIETRLFIESGGDVILGGMFPLHNSVINLPLEFNAVPTSADCVMLNERALTRLYTMLYTIEEINNRSDLLPNMKLGYRVIDSCTDVMKAVEASYEFSLSGSTQKPPLVVIGDAYSFLTIPAAYTLGLKHI PMISYSASAPSLSDKTRFPTFMRTIPSDTFQSKALAELVGHFGWTWIGILGSDDDYGRQGLGKFQSDAHEYGVCTDFQIWVPKKIAIKDINSIVNVIQNSTVKVIIAFVIDAELEPIIKEMARRQIVGKTFIASESWISSPVIHKPQYADVLEGTIGFDMISADMNKLSDFLRNSKPTTD NPFMTELWQETFHCTPYPSGLVDAARLPACSGDESLGSVTSSFFNPSEMTVPYAVYLAVYAVAHALHELTACTTWTSVFAGGHCANLSDIQPWQVMRYLKKVDFKDNGYNIRFDANGDPVAYYILKQWQRKDDENMKMVAVGSYTNLNNNTNSTNKGHLIINDELLLWMGKQLKAPDSLC VAACPEGSKKEYEAGQPSCCYRCVQCSDGEFSKTKDANNCMRCPPDSWSTGTHTDCFVKPVQYLKWDSVEGLILHIAAIIGIFLTIDVLFIFYKYRETPIVKASNFKISLMLLICLFCNFLCIYVFVGIPKPWMCITRQPFFGVSFSSCLSCILVKTISMIITFKPSLTRNNTFHRQMTR AEIPIVAVVIVIEVALCVVWYFLASPSVFRNENIKADTIFLQCDEGSPLNFAFIIAYLYVLALICLMLSFMVRKLPNNFNEGKFVMFSALTFFIVWISFIPAYILSNEHRVVVEVISIILSGYGILIFLFFHKCYIILFQPQKNTKEHLDKQLMEFIQKAVEDKIGGATATHPVQVT

7)T1R genes

If you want to extract T1R genes from a genome :

sbatch T1R_Finder.sh $genome_file_name $T1R_database $GPCR_database $Script_folders_location $intron_sizes $thread_number $phobius_tmhmm

  • $genome_file_name : Your genome fasta file
  • $T1R_database : Database containing protein sequences of known T1R genes. You can either create one of your choice or use the one provided here (Database_T1R/Database_2022_T1R_vertebrates_cdhit_80.prot)
  • $GPCR_database : Blast database of non-chemoreceptors GPCR proteins + chemoreceptors proteins. One should use the database provided (GPCR_plus_Chemoreceptors_vertebrates.prot)
  • $Script_folders_location : Full path the the folder containing accessory T1R_finder scripts (Database_T1R/Scripts_2022/)
  • $intron_sizes : Maximum intron size for T1R genes. (Set between 15,000 ad 40,000 depending on the species)
  • $thread_number : Number of thread that will be used by IQ-TREE and BLAST
  • $phobius_tmhmm : Set to TRUE or FALSE. If TRUE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed into the same file as pseudogenes and truncated genes. If FALSE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed in the result file together with genes with a predicted 7tm domain.

8)T2R genes

sbatch T2R_Finder.sh $genome_file_name $T2R_database $GPCR_database $Script_folders_location $intron_sizes $thread_number $evalue $phobius_tmhmm

  • $genome_file_name : Your genome fasta file
  • $T2R_database : Database containing protein sequences of known T2R genes. You can either create one of your choice or use the one provided here (Database_T2R/Vertebrates_T2R_db_cdhit_70.prot)
  • $GPCR_database : Blast database of non-chemoreceptors GPCR proteins + chemoreceptors proteins. One should use the database provided (GPCR_plus_Chemoreceptors_vertebrates.prot)
  • $Script_folders_location : Full path the the folder containing accessory T2R_finder scripts (Database_T2R/Scripts_2022/)
  • $intron_sizes : Maximum intron size for T2R genes (Deprecated, you can put a random number. I never found any multiple-exon T2R genes)
  • $thread_number : Number of thread that will be used by IQ-TREE and BLAST
  • $evalue : evalue for the initial tblastn of known T2R genes against the genome. Optimal : 1e-5
  • $phobius_tmhmm : Set to TRUE or FALSE. If TRUE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed into the same file as pseudogenes and truncated genes. If FALSE, then genes without a 7tm domain predicted by phobius and/or tmhmm will be placed in the result file together with genes with a predicted 7tm domain.

9)Example

Lets say I want to extract T2R genes from the Danio rerio genome. First I download the zebrafish genome and unzip it (fasta):

wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/002/035/GCA_000002035.4_GRCz11/GCA_000002035.4_GRCz11_genomic.fna.gz gzip -d GCA_000002035.4_GRCz11_genomic.fna.gz

Then run the T2R pipeline, with a tblastn evalue of 1e-5 and 20 threads :

sbatch T2R_Finder.sh GCA_000002035.4_GRCz11_genomic.fna ./Database_T2R/Vertebrates_T2R_db_cdhit_70.prot GPCR_plus_Chemoreceptors_vertebrates.prot ./Database_T2R/Scripts_2022/ 25000 20 1e-5 TRUE

Note that the two Dinpoi genome as well as the genome of Ambystoma mexicanum are too large for tblastn. Thus you must split these genome. For example, to split the genome in 30 parts :

  • grep -v ">" GCA_002915635.3_AmbMex60DD_genomic.fna > GCA_002915635.3_AmbMex60DD_genomic_no_header.fna
  • samtools faidx GCA_002915635.3_AmbMex60DD_genomic.fna
  • nb_nuc=`awk '{sum+=$2;} END{print sum;}' GCA_002915635.3_AmbMex60DD_genomic.fna.fai
  • ans=$((nb_nuc / 30))
  • split -b $ans GCA_002915635.3_AmbMex60DD_genomic_no_header.fna splitted_genome

Large genomes containing a lot of V2R genes, with large introns, such as Dipnoi and Amphibian genomes can also cause some problem for this pipeline. Indeed, exonerate will not be able to predict all possible genes, even in 6 hours. Thus, what I did, and which I recommend, is to first generate a V2R subgenome. Here is how : 1- First, run a tblastn using the V2R database against the genome 2- Second, extract only non-overlapping hit regions (extend -2000/+2000 around each hits) 3- Then, for each non-overlapping hits on the same scaffold, merge the results and create new "sub-scaffold". Do not merge blast results that were in different scaffolds 4- Then, you can run the classic pipeline provided here (V2R_Finder.sh) I provide a script to automatically perform steps 2 to 4 : V2R_Finder_large_genomes.sh. By mapping back V2R genes found to the original genome, V2R genes in lungfishes indeed have large introns, from few thousand base pairs to millions base pairs.

I recommend to not add sequences retrieved from previous run of this pipeline to the database. If a gene is mis-annotated or wrongly classified (should not happen), you will propagate the error. The databases were built to have a representative set of genes for each family. For a subset of representative species, I decreased the e-value threshold (compared to the opitmal values I report above for each chemoreceptor families) to see if any new genes would pop up but the result is that decreasing these thresholds lead to many non-chemoreceptor regions in the blast results (and hence considerably increase the running time). It is also possible that highly degenerated (old) pseudogenes are missed by the pipeline, but such genes should be manually verified, for example adding more information to confirm that these are chemoreceptor pseudogenes (their position relative to other chemoreceptors in the genome or their position relative to other genes compared to other species, manually trimmed alignments and ML trees ...). Nevertheless, compared to previous studies (see the manuscript) or compared to NCBI annotations, I believe that these pipelines are very efficient, both in term of number of retrieved genes but also in term of the gene sequences predicted.

I also recommend that if you work on a relatively small subset of species, you manually check pseudogenes are some may be wrongly annotated as so by exonerate. (Thus manually checking the exonerate results). Complete genes annotations should be good or relatively close to the reality but again, on a small subset of species, it would be worth to verify those genes, especially those for which the number of exons reported by exonerate is much higher or shorter than expected (sometime exonerate will integrate very small but spurious exons increasing the exonerate score). If you have any questions or feedback, I can easily be reached at [email protected] or [email protected].

I am currently building similar pipleines using the new program "miniprot". This will lead to much faster running time without the need to parallelize exonerate jobs anymore.

About

Full automatic pipelines to mine OR, TAAR, V2R and V1R genes from any vertebrate genome

Resources

Stars

Watchers

Forks

Packages

No packages published