Skip to content
forked from dyhBUPT/YYDS

YYDS: Visible-Infrared Person Re-Identification with Coarse Description

Notifications You must be signed in to change notification settings

MiSanl/YYDS-VIReID

 
 

Repository files navigation

YYDS

YYDS: Visible-Infrared Person Re-Identification with Coarse Description

arXiv

Abstract

TBD

Experiments

experiments

Data Preparation

  1. Download datasets SYSU-MM01, RegDB and LLCM. Then, please change correlated variables to your data path, i.e., data_path in train.py/test.py. The preprocessed SYSU-MM01 is also provided in baidu disk.

  2. Download textual model RoBERTa. Then, please change the variable RoBERTa_path in utils_new.py to your model path.

Requirements

  • python=3.8
  • torch==2.0.1
  • torchvision==0.15.2
  • tensorboard=2.12.1
  • numpy==1.24.3
  • transformers==4.32.1
  • tqdm==4.65.0
  • einops==0.7.0
  • nltk==3.8.1
  • datetime==5.2

Test

For direct testing, please download our prepared checkpoints and extracted features from baidu disk.

1) Baseline on SYSU-MM01

All search mode

python test.py --gpu 0 --resume path_to_model/SYSU_Baseline/sysu_deen_p4_n4_lr_0.1_seed_0_best.t --mode all
Rank-1: 72.36% | Rank-5: 92.15% | Rank-10: 96.56%| Rank-20: 99.03%| mAP: 68.24%| mINP: 54.03%

Indoor search mode

python test.py --gpu 0 --resume path_to_model/SYSU_Baseline/sysu_deen_p4_n4_lr_0.1_seed_0_best.t --mode indoor
Rank-1: 78.50% | Rank-5: 96.00% | Rank-10: 98.45%| Rank-20: 99.50%| mAP: 82.06%| mINP: 78.21%

2) YYDS (w/o Joint Relation Module) on SYSU-MM01

All search mode

python test.py --gpu 0 --text_mode v1 --resume path_to_model/SYSU_YYDS_woJoint/sysu_deen_p4_n4_lr_0.1_seed_0_best.t --mode all
Rank-1: 84.54% | Rank-5: 96.78% | Rank-10: 98.84%| Rank-20: 99.63%| mAP: 80.01%| mINP: 67.89%

Indoor search mode

python test.py --gpu 0 --text_mode v1 --resume path_to_model/SYSU_YYDS_woJoint/sysu_deen_p4_n4_lr_0.1_seed_0_best.t --mode indoor
Rank-1: 89.47% | Rank-5: 98.53% | Rank-10: 99.37%| Rank-20: 99.78%| mAP: 90.64%| mINP: 87.84%

3) YYDS on SYSU-MM01

All search mode

python test.py --gpu 0 --text_mode v2 --resume path_to_model/SYSU_YYDS/sysu_deen_p4_n4_lr_0.1_seed_0_best.t --mode all
Rank-1: 85.54% | Rank-5: 97.72% | Rank-10: 99.30%| Rank-20: 99.78%| mAP: 81.64%| mINP: 70.51%

Indoor search mode

python test.py --gpu 0 --text_mode v2 --resume path_to_model/SYSU_YYDS/sysu_deen_p4_n4_lr_0.1_seed_0_best.t --mode indoor
Rank-1: 89.13% | Rank-5: 98.99% | Rank-10: 99.66%| Rank-20: 99.96%| mAP: 91.00%| mINP: 88.55%

4) Baseline on RegDB

python test.py --gpu 0 --dataset regdb --resume path_to_model/RegDB_Baseline
Rank-1: 89.13% | Rank-5: 94.67% | Rank-10: 96.81%| Rank-20: 98.54%| mAP: 81.76%| mINP: 66.91%

5) YYDS on RegDB

python test.py --gpu 0 --dataset regdb --text_mode v2 --resume path_to_model/RegDB_YYDS
Rank-1: 90.16% | Rank-5: 95.29% | Rank-10: 97.29%| Rank-20: 98.80%| mAP: 83.53%| mINP: 69.41%

6) Baseline on LLCM

python test.py --gpu 0 --dataset llcm --resume path_to_model/LLCM_Baseline/llcm_deen_p4_n4_lr_0.1_seed_0_best.t
Rank-1: 56.51% | Rank-5: 78.09% | Rank-10: 85.30%| Rank-20: 91.31%| mAP: 63.21%| mINP: 59.87%

7) YYDS on LLCM

python test.py --gpu 0 --dataset llcm --text_mode v2 --resume path_to_model/LLCM_YYDS/llcm_deen_p4_n4_lr_0.1_seed_0_best.t 
Rank-1: 58.22% | Rank-5: 80.62% | Rank-10: 87.24%| Rank-20: 92.64%| mAP: 65.09%| mINP: 61.72%

Train

First, please change the variable SAVE_DIR in train.py to your root for saving output files.

1) Trian on SYSU-MM01 and LLCM

Here is an example for training baseline:

python -m torch.distributed.run --nproc_per_node 2 --master_port 10000 train.py --gpu 0,1 --dataset sysu --log_path tmp

here:

  • nproc_per_node is the gpu numbers.
  • dataset can be sysu or llcm.
  • log_path is the directory name for saving output files.

To train YYDS, please set --text_mode v2. Or you can set --text_mode v1 to train "YYDS w/o Joint Relation Module".

2) Train on RegDB

For RegDB, we should train 10 models with trail 1-10 respectively. Please directly use our provided scripts:

bash train_regdb.bash

Re-Ranking

You can perform both the original version and our improved version of k-reciprocal re-ranking algorithm by running re_ranking.py.

First, please change the variable FEAT_DIR to your model path.

Then, you can choose the method and dataset with the following variables:

  • dataset: sysu, regdb, llcm.
  • method: baseline, constrained, extended, divided.

Please note that, for these four methods, only parameters k1, k2 and lam are needed. If you want the MA-LQE method, k3 is also needed (it is not applied for constrained method in our codes).

The selected best parameters ([k1, k2, lam] or [k1, k2, k3, lam]) for different methods and datasets are listed here:

Dataset Method Parameters
SYSU-MM01 k-reciprocal [40, 35, 0.1]
constrained [30, 30, 0.2]
divided [40, 30, 0.1]
extended [35, 35, 0]
extended + MA-LQE [35, 35, 4, 0.1]
RegDB k-reciprocal [15, 5, 0.3]
constrained [10, 1, 0.1]
divided [10, 10, 0.3]
extended [10, 5, 0]
extended + MA-LQE [10, 10, 3, 0]
SYSU-MM01 k-reciprocal [25, 10, 0.3]
constrained [15, 15, 0.4]
divided [25, 10, 0.5]
extended [25, 10, 0.3]
extended + MA-LQE [25, 10, 0, 0.4]

Citation

TBD

Acknowledgement

Our codes are based on DEEN. Thanks for their excellent work!

About

YYDS: Visible-Infrared Person Re-Identification with Coarse Description

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • Shell 0.5%