-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 3fef134
Showing
14 changed files
with
1,904 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
from torch.utils.data import DataLoader | ||
from tqdm import tqdm | ||
|
||
import sys | ||
sys.path.append('.') | ||
from EEGDiff.Code.utils import train_finetune_test_split | ||
from EEGDiff.Code.Dataset import EEGContrastDataSet, EEGClassifierDataSet, dataload | ||
from EEGDiff.Code.Contrastive.Contrastive_Model import Encoder, Classifier | ||
from EEGDiff.Code.Contrastive.Contrastive_utils import InfoNCELoss, generate_negative_index, freq_disturb | ||
|
||
|
||
|
||
def train(model, dataloader, optimizer, device, pure_eeg, noise_eeg, temperature, neg_size): | ||
model.to(device) | ||
model.train() | ||
contrast_loss = InfoNCELoss(temperature).to(device) | ||
|
||
losses = [] | ||
|
||
for (eeg_arg, eeg_noise, index) in tqdm(dataloader): | ||
optimizer.zero_grad() | ||
|
||
# 生成负样本集合 | ||
eeg_neg_pure = pure_eeg[generate_negative_index(index, neg_size)] | ||
eeg_neg_noise = noise_eeg[generate_negative_index(index, neg_size)] | ||
eeg_neg_pure = freq_disturb(eeg_neg_pure) | ||
eeg_neg_noise = freq_disturb(eeg_neg_noise) | ||
eeg_neg = torch.cat((eeg_neg_pure, eeg_neg_noise), dim=0) | ||
|
||
eeg_arg = eeg_arg.to(device).float() | ||
eeg_noise = eeg_noise.to(device).float() | ||
eeg_neg = eeg_neg.to(device).float() | ||
|
||
eeg_arg_embed = model(eeg_arg) | ||
eeg_noise_embed = model(eeg_noise) | ||
eeg_neg_embed = model(eeg_neg) | ||
|
||
loss = contrast_loss(eeg_arg_embed, eeg_noise_embed, eeg_neg_embed) | ||
loss_rev = contrast_loss(eeg_noise_embed, eeg_arg_embed, eeg_neg_embed) | ||
loss = 0.5 * (loss + loss_rev) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
losses.append(loss.cpu().detach().numpy()) | ||
|
||
losses = np.array(losses) | ||
return losses.mean().item() | ||
|
||
|
||
def test(model, dataloader, device, pure_eeg, noise_eeg, temperature, neg_size): | ||
model.to(device) | ||
model.eval() | ||
contrast_loss = InfoNCELoss(temperature).to(device) | ||
|
||
losses = [] | ||
|
||
for (eeg_arg, eeg_noise, index) in tqdm(dataloader): | ||
# 生成负样本集合 | ||
eeg_neg_pure = pure_eeg[generate_negative_index(index, neg_size, 2999)] | ||
eeg_neg_noise = noise_eeg[generate_negative_index(index, neg_size, 2999)] | ||
eeg_neg_pure = freq_disturb(eeg_neg_pure) | ||
eeg_neg_noise = freq_disturb(eeg_neg_noise) | ||
# print(eeg_neg_pure.shape, eeg_neg_noise.shape) | ||
eeg_neg = torch.cat((eeg_neg_pure, eeg_neg_noise), dim=0) | ||
|
||
eeg_arg = eeg_arg.to(device).float() | ||
eeg_noise = eeg_noise.to(device).float() | ||
eeg_neg = eeg_neg.to(device).float() | ||
|
||
eeg_arg_embed = model(eeg_arg) | ||
eeg_noise_embed = model(eeg_noise) | ||
eeg_neg_embed = model(eeg_neg) | ||
|
||
loss = contrast_loss(eeg_arg_embed, eeg_noise_embed, eeg_neg_embed) | ||
loss_rev = contrast_loss(eeg_noise_embed, eeg_arg_embed, eeg_neg_embed) | ||
loss = 0.5 * (loss + loss_rev) | ||
losses.append(loss.cpu().detach().numpy()) | ||
|
||
losses = np.array(losses) | ||
return losses.mean().item() | ||
|
||
|
||
def evaluate(model, finetune_dataloader, test_dataloader, optimizer, device): | ||
model.to(device) | ||
critation = nn.CrossEntropyLoss() | ||
|
||
# model finetuning for motivation recognition | ||
model.train() | ||
finetuning_losses = 0.0 | ||
# for i in range(5): | ||
for (data, label) in tqdm(finetune_dataloader): | ||
data = data.to(device).float() | ||
label = label.to(device).float() | ||
optimizer.zero_grad() | ||
pre = model(data) | ||
finetuning_loss = critation(pre, label) | ||
finetuning_loss.backward() | ||
optimizer.step() | ||
finetuning_losses += finetuning_loss.item() | ||
finetuning_losses /= len(finetune_dataloader) | ||
|
||
# compute accuracy after finetuning | ||
model.eval() | ||
accs = 0.0 | ||
with torch.no_grad(): | ||
for (data, label) in tqdm(test_dataloader): | ||
data = data.to(device).float() | ||
label = label.to(device).float() | ||
|
||
label = torch.argmax(label, dim=-1) | ||
pred = model(data) | ||
pred = F.softmax(pred, dim=1) | ||
pred = torch.argmax(pred, dim=-1) | ||
|
||
correct = torch.eq(pred, label) | ||
acc = correct.sum().float().item() / len(label) | ||
accs += acc | ||
accs /= len(test_dataloader) | ||
|
||
return finetuning_losses, accs | ||
|
||
|
||
def main(): | ||
BATCH_SIZE = 1024 | ||
NEGATIVE_SIZE = 1024 | ||
EPOCHS = 500 | ||
TEMPERATURE = 0.5 | ||
# max_acc = 0.5 | ||
mini_loss = 50 | ||
|
||
|
||
print("torch.cuda.is_availabel(): ", torch.cuda.is_available()) | ||
device = "cuda" if torch.cuda.is_available() else 'cpu' | ||
|
||
# 读入数据 | ||
# [train, finetune, test] | ||
noise_eeg, pure_eeg, label = dataload('/home/zzb/EEGDiff/Data/1c_win_shuffle') | ||
|
||
# 对比学习数据集构建 | ||
train_dataset = EEGContrastDataSet(pure_eeg[0], noise_eeg[0]) | ||
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) | ||
|
||
# 下游任务数据集构建 | ||
# finetune_dataset = EEGClassifierDataSet(noise_eeg[1], label[1]) | ||
# finetune_loader = DataLoader(finetune_dataset, batch_size=BATCH_SIZE, shuffle=True) | ||
test_dataset = EEGContrastDataSet(pure_eeg[2], noise_eeg[2]) | ||
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) | ||
|
||
# model initialization | ||
encoder = Encoder() | ||
classifier_model = Classifier(encoder) | ||
|
||
# optimizer initialization | ||
train_optimizer = torch.optim.Adam(encoder.parameters(), lr=1e-4) | ||
finetuning_optimizer = torch.optim.Adam(classifier_model.parameters(), lr=1e-4) | ||
|
||
# main loop | ||
for epoch in range(EPOCHS): | ||
train_loss = train(encoder, train_loader, train_optimizer, device, pure_eeg[0], noise_eeg[0], TEMPERATURE, NEGATIVE_SIZE) | ||
test_loss = test(encoder, test_loader, device, pure_eeg[2], noise_eeg[2], TEMPERATURE, NEGATIVE_SIZE) | ||
|
||
''' | ||
# finetuning_loss, test_acc = evaluate(classifier_model, finetune_loader, test_loader, finetuning_optimizer, device) | ||
# tqdm.write(f'epoch {epoch + 1}, train_loss: {train_loss:.8f}, finetuning_loss: {finetuning_loss:.8f}, test_acc: {test_acc:.3f}') | ||
# with open('/home/zzb/EEGDiff/Log/eeg_contrastive_log.txt', 'a') as f: | ||
# f.write(f'epoch {epoch + 1}, train_loss: {train_loss:.8f}, finetuning_loss: {finetuning_loss:.8f}, test_acc: {test_acc:.3f}') | ||
# if max_acc <= test_acc: | ||
# max_acc = test_acc | ||
# torch.save(encoder.state_dict(), f'/home/zzb/EEGDiff/Model/contrastive/encoder_{epoch+1}_{test_acc:.3f}.pkl') | ||
''' | ||
|
||
|
||
tqdm.write(f'epoch {epoch + 1}, train_loss: {train_loss:.8f}, test_loss: {test_loss:.8f}') | ||
|
||
with open('/home/zzb/EEGDiff/Log/eeg_contrastive_log.txt', 'a') as f: | ||
f.write(f'epoch {epoch + 1}, train_loss: {train_loss:.8f}, test_loss: {test_loss:.8f}\n') | ||
|
||
if test_loss <= mini_loss: | ||
mini_loss = test_loss | ||
torch.save(encoder.state_dict(), f'/home/zzb/EEGDiff/Model/contrastive/encoder_{epoch+1}_{test_loss:.8f}.pkl') | ||
|
||
|
||
|
||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
|
Oops, something went wrong.