Releases: Nixtla/mlforecast
Releases · Nixtla/mlforecast
v1.0.1
Bug Fixes
- fix: X_df handling in direct approach @jmoralez (#468)
- fix(auto): remove invalid params from xgboost default space @jmoralez (#464)
v1.0.0
Breaking Change
- breaking: remove window_ops and numba dependencies @jmoralez (#462)
v0.15.0
Breaking Change
- breaking: drop rows with null targets when
dropna=False
@jmoralez (#447)
Bug Fixes
Enhancement
- enh(distributed): propagate null features in spark @jmoralez (#448)
v0.14.0
New Features
- feat: add
weight_col
to MLForecast.fit
and MLForecast.cross_validation
@jmoralez (#444)
- feat: infer samples required for built-in lag transforms updates @jmoralez (#445)
v0.13.6
Bug Fixes
- fix(distributed): exogenous handling in distributed cross validation @jmoralez (#443)
- fix(distributed): support pre-computed features @jmoralez (#436)
v0.13.5
Enhancement
- enh: add step_size to AutoMLForecast @jmoralez (#426)
- support
step_size
selection in optimization.mlforecast_objective
@bchaoss (#419)
- use TypeVar for dataframes and distribute py.typed file @jmoralez (#408)
v0.13.4
New Features
Documentation
- Clear up the README for the new user @Ammar-Azman (#397)
Enhancement
v0.13.3
Bug Fixes
- handle no target transforms in DistributedMLForecast.to_local @jmoralez (#388)
Enhancement
v0.13.2
New Features
Bug Fixes
Enhancement