Segmenting the Cell Membrane in C. elegans embryo
from devolearn import cell_membrane_segmentor
segmentor = cell_membrane_segmentor ()
Running the model on an image and viewing the prediction
seg_pred = segmentor .predict (image_path = "sample_data/images/seg_sample.jpg" )
plt .imshow (seg_pred )
plt .show ()
Running the model on a video and saving the predictions into a folder
filenames = segmentor .predict_from_video (video_path = "sample_data/videos/seg_sample.mov" , centroid_mode = False , save_folder = "preds" )
Finding the centroids of the segmented features
seg_pred , centroids = segmentor .predict (image_path = "sample_data/images/seg_sample.jpg" , centroid_mode = True )
plt .imshow (seg_pred )
plt .show ()
Saving the centroids from each frame into a CSV
df = segmentor .predict_from_video (video_path = "sample_data/videos/seg_sample.mov" , centroid_mode = True , save_folder = "preds" )
df .to_csv ("centroids.csv" )
Segmenting the Cell Nucleus in C. elegans embryo
from devolearn import cell_nucleus_segmentor
segmentor = cell_nucleus_segmentor ()
Running the model on an image and viewing the prediction
seg_pred = segmentor .predict (image_path = "sample_data/images/nucleus_seg_sample.jpg" )
plt .imshow (seg_pred )
plt .show ()
Generating synthetic images of embryos with a Pre-trained GAN
from devolearn import Generator , embryo_generator_model
generator = embryo_generator_model ()
Generating a picture and viewing it with matplotlib
gen_image = generator .generate ()
plt .imshow (gen_image )
plt .show ()
Generating n images and saving them into foldername
with a custom size
generator .generate_n_images (n = 5 , foldername = "generated_images" , image_size = (700 ,500 ))
Predicting populations of cells within the C. elegans embryo
Importing the population model for inferences
from devolearn import lineage_population_model
Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model (device = "cpu" )
Making a prediction from an image
print (model .predict (image_path = "sample_data/images/embryo_sample.png" ))
Making predictions from a video and saving the predictions into a CSV file
results = model .predict_from_video (video_path = "sample_data/videos/embryo_timelapse.mov" , save_csv = True , csv_name = "video_preds.csv" , ignore_first_n_frames = 10 , ignore_last_n_frames = 10 , postprocess = False )
Plotting the model's predictions from a video
plot = model .create_population_plot_from_video (video_path = "sample_data/videos/embryo_timelapse.mov" , save_plot = True , plot_name = "plot.png" , ignore_last_n_frames = 0 , postprocess = False )
plot .show ()
Links to HuggingFace spaces
Feel free to join our Slack workspace !